
LA-UR-05-4046

USE OF COMMERCIALLY AVAILABLE SOFTWARE IN AN ATTRIBUTE
MEASUREMENT SYSTEM

Duncan W. MacArthur, David S. Bracken, Louis A. Carrillo, Timothy H. Elmont,
Katherine C. Frame, and Karen L. Hirsch

Los Alamos National Laboratory
Los Alamos, NM 87545

Presented at the
Institute of Nuclear Material Management

46th Annual Meeting
Phoenix, Arizona
July 10-14, 2005

Los Alamos
N A T I O N A L L A B O R A T O R Y

This is a preprint of a paper intended for publication in a journal or proceedings. Because changes may be made before publication, this preprint is made
available with the understanding that it will not be cited or reproduced without the permission of the author.

USE OF COMMERCIALLY AVAILABLE SOFTWARE IN AN
ATTRIBUTE MEASUREMENT SYSTEM

Duncan MacArthur*, David Bracken*, Louis Carrillo*, Tim Elmont*,
Katherine Frame*, Karen Hirsch^, Philip Hypes*, Jozef Kuzminski*,

Robert Landry**, Douglas R. Mayo*, Morag Smith*, Due Vo*
*Safeguards Science and Technology, Nuclear Nonproliferation Division

^Advanced Nuclear Technology, Applied Physics Division
**Safeguards Systems, Nuclear Nonproliferation Division
Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract
A major issue in international safeguards of nuclear materials is the ability to verify that
processes and materials in nuclear facilities are consistent with declaration without revealing
sensitive information. An attribute measurement system (AMS) is a non-destructive assay
(NDA) system that utilizes an information barrier to protect potentially sensitive information
about the measurement item. A key component is the software utilized for operator interface,
data collection, analysis, and attribute determination, as well as the operating system under
which they are implemented. Historically, custom software has been used almost exclusively in
transparency applications, and it is unavoidable that some amount of custom software is needed.
The focus of this paper is to explore the extent to which commercially available software may be
used and the relative merits.

Introduction
We consider the relative merits of using commercial, off-the-shelf (COTS) software versus the
traditional use of custom-designed software in an attribute measurement system (AMS). An
AMS is a nondestructive assay (NDA) system that utilizes an information barrier (US) to protect
potentially sensitive information about the measured item[l][2]. A concept of operations for an
AMS is described in other documents[3].

One or more computing modules are needed to provide an interface between detector hardware
and the user, as well as to analyze data (Figure 1). The operating system and application software
installed in the computing module(s) will be used to interpret operator input, interface with the
detector hardware, analyze data, verify that an item meets the declared attributes, and indicate
the system status to the operator. It is unavoidable that some custom software will be required in
any AMS, particularly for attribute comparison and the user interface.

This paper explores the ramifications of using COTS software whenever possible as opposed to
the exclusive use of custom-designed software in the computing module(s). Here we will focus
on the software used for the detector hardware interface and data analysis as well as on the
operating system under which this software runs.

1

T"» '

carrier

Detector
Hardware

4 fc

1
Computing
Module(s)

. _ J \ h.

¥

Hardware
Controls

Status
Indicators

Figure 1. Simplified schematic representation of an AMS system. Detector hardware includes
both radiation detectors and their associated analyzing electronics. One or more computing
modules are used to prompt the detector(s) to start collecting data, interpret the data, compare it
to the attribute thresholds or ranges, and send an unambiguous signal to the status indicator
panel. The hardware control panel and status indicators provide the interface between both the
user and the AMS. The information barrier is shown in blue, modules containing potentially
sensitive information are red, modules accessible outside of the barrier are green, and wiring that
is protected by virtue of its location is orange.

The Options
All AMSs require some custom software. This software is necessary both to run a command
script and to compare the results of the data analysis to the acceptable range for each of the
attributes, hi either software option, a simple "hardware only" interface is employed to allow the
operator to start data acquisition. The remainder of this paper focuses on the data acquisition and
analysis software.

Option 1: Custom-Designed Software
An AMS incorporating custom-designed software would use a source-code-available operating
system (e.g. Linux or ROM-DOS™), compiler, detector hardware interface and analysis
software (e.g. NMC, Pu600). This has been the traditional approach used in transparency
demonstrations^]. A block diagram illustrating this approach is shown in Figure 2. Strictly
speaking, the operating system used in this approach is not necessarily "custom," however, the
availability of the source codes used allows any portion of the system to be modified in order
eliminate extraneous functionality.

NMC

HPGe

>

Barrier

Shift
Register

*• MCA

Computing Module(s)
Detector Hardware Interface,

User Interface
Data Analysis, and Attribute

Comparison
(Custom Software)

#**

I
n
B
1

^ D
B

1

i—

4

Hardware
Controls

Status
Indicators

Figure 2. A simple representation of how custom software might be implemented in an AMS. The
information barrier components (including two data barriers) are shown in blue, modules
containing potentially sensitive information are red, modules accessible outside of the barrier are
green, and wiring that is protected by virtue of its location is orange.

2

Option 2: COTS Software
A measurement system using industry-standard COTS software would include a high-level
operating system (e.g., Windows-XP) and would run commercially available NDA data
acquisition and analysis software (e.g., INCC, Maestro, FRAM, or Genie 2000). This option,
illustrated in Figure 3. depends as much as possible on COTS software, using minimal command
scripting to direct the COTS software.

Barrier

NMC

HPGe

—•

—•

AMSR

MCA

MSB

Computing
Module 1

Detector Hardware
Interface and Data

Analysis
(COTS Software)

4
Computing
Module 2

User Interface
and Attribute
Comparison
(Custom
Software)

D
6 t—

l
n D

B
-A

Hardware
Controls

Status
Indicators

Figure 3. An implementation of an AMS using COTS software for the detector interface and data
analysis of both neutron and gamma signals. The COTS software is quarantined within its own
computer(s). The information barrier components (including two data barriers) are shown in blue,
modules containing potentially sensitive information are red, modules accessible outside of the
barrier are green, and wiring that is protected by virtue of its location is orange.

Requirements and Issues
At the highest level, there are two sets of concerns that the AMS must satisfy:

(1) The host facility must be able to certify the AMS for operation within that facility. This will
include verifying that sensitive information is protected and that the AMS meets all applicable
safety and security requirements. Sensitive information is well defined and, therefore, the
security concerns of the host are fairly well defined. Safety considerations, although critical, are
beyond the scope of this document.

(2) The inspecting party must be able to draw independent conclusions from the results generated
by the AMS. Confidence in the authenticity of the results can be harder to assess, and
historically, certifying a system is more straightforward than confidence building. The approach
to confidence building has been to take actions that will increase confidence to as high a level as
possible while still meeting the host's certification requirements.

In order to simultaneously satisfy both concerns, there are several issues that any software option
will need to address:

• All parties must be able to trust the results.
• The system must be reliable.
• The required resources must be available.

3

The remainder of this paper examines these issues and how they relate to each of the software
design options.

All parties must be able to trust the results of the attribute comparison.
In general, this means that the software must meet the computational requirements needed to
provide an unambiguous comparison with the agreed-upon thresholds. All parties must be
confident that there are no hidden or unknown functionalities or data storage capabilities.

The inspecting party may require more stringent scrutiny of software that is developed in the
host country in order to build confidence in the results. Conversely, it must be demonstrated that
software developed outside of the host country preserves the security of the host facility.

In either case, if custom software (option 1) is used, trust can be established by supplying all
parties with the complete source code (although it is possible that the source code will be
sufficiently complex to render complete scrutiny impractical). In addition, the availability of the
source code means the possibility of exposure can act as a deterrent. However, the "bus"
communication required by modern MCA's and shift registers does open up the potential for
modification to custom software by changing the detector settings.

In option 2, the use of a widely available operating system, such as Windows XP, lends itself to
the use of blind buys and random selection as means of establishing trust in the software. For
example, multiple copies of standard, shrink-wrapped packages of the operating system can be
purchased from any vendor. One copy can be used for installation and the other copies can be
given to all involved parties for whatever level of examination they require.

The use of blind buys and random selection can also apply to the choice of detector hardware
interface and data analysis COTS software, such as Maestro, PC-FRAM, or ENCC. While much
of this standard software was written in the US, this software has been used and rigorously tested
worldwide. During the years that this software has undergone quality assurance,
commercialization, and years of field use, any hidden or otherwise erroneous functionality
should have been discovered. Because the software is licensed to commercial vendors whose
prime motive is making a profit, there is strong incentive for releasing an unflawed product.

The system must be reliable.
System reliability is particularly important in transparency regimes. Significant numbers of
people travel long distances to participate in these measurements. These measurement visits will
have to be scheduled many months in advance, limiting operational flexibility. Poor system
reliability will, at the very least, make inefficient use of everyone's time. At worst, poor
reliability could lead to reevaluation of the technical viability of the entire program. Although
any measurement system can fail, every effort must be made to ensure that failures in the system
are as infrequent and as easily resolved as possible.

System reliability is defined as the probability that the system will accurately perform attribute
measurements on any anticipated or reasonably similar item under a set of defined conditions for
a defined duration. The exact reliability standard that will become the design target will be
determined by the cost of developing a system capable of meeting the design goal and by how
well the system is expected to tolerate items that are not reasonably similar to the anticipated

4

items. If the AMS simply responds with a system error report when the system cannot accurately
perform an attribute measurement on an item that is different from what is anticipated, a lower
reliability value can be tolerated. If the difference leads to a system crash that requires the
rebooting of the system—or worse, requires expert diagnosis—the system's reliability will need
to be much higher.

In option 1, the software would be developed specifically for a particular Concept of Operations
and for the types of items that were predetermined under a particular agreement. Development,
integration, and testing costs will increase proportionately with increased reliability testing and
measurement flexibility. In order to obtain the best possible reliability and flexibility, custom
software would have to be designed and tested to the same level as a commercial product that
was intended for general NDA. This would be a significant project in its own right; the
development of such software has typically involved millions of dollars and years to decades of
design, testing, and quality assurance work. This level of quality assurance is not practical within
the framework of an AMS project. Custom software would be developed to be as flexible as
possible, within the time and budget constraints, but its flexibility could not be expected to
approach that of commercially available software. In addition, the software must be designed to
fail gracefully, instead of crashing. Yet, this graceful failure mode could only be proven within
the confines of time and the budget that was available for testing. Testing would also be
complicated by the need to test items that are at or beyond the limits of the agreement.

Option 2 makes use of available COTS software. The COTS software packages that are
appropriate for an AMS have been in common use worldwide for many years, and broad testing
and use demonstrate the reliability of the software. Although not all COTS software has the same
level of reliability, carefully selected commercial software will generally have greater reliability
than custom-developed software that is application specific. Using COTS software reduces the
developers' control over whether the system fails gracefully or catastrophically, but codes that
regularly have catastrophic failures either get upgraded or fail to be commercially viable in the
long run.

The required resources must be available.
The success of an AMS project depends heavily on the availability of the required resources for
development. These resources include both funding and personnel time. Additionally, they
should include not only the development costs for each individual software component but also
the costs to integrate the components into a system, test the full system, document the software
components, and inspect the system (during confidence building and certification). This
requirement is closely related to the above-mentioned requirements for system reliability. A
user's guide and other software documentation will undoubtedly be required for either software
option.

Option 1, the use of custom-designed software, has been prone to application and system crashes
in the past. The frequency and seriousness of these crashes are typically inversely proportional to
the amount of time and money spent developing and testing the software components. Thus, the
costs for developing reliable custom software modules are highest for this option. However, after
the software modules are completed, the costs for the integration of the individual components
would be the lower of the two options because each component has been specifically designed
for an AMS. In our discussions, we have assumed that the required resources are available.

5

Unfortunately, if the software author(s) has retired in the interim or otherwise moved on, this
assumption may not hold true.

The costs associated with testing the completed system and writing documentation for the
individual software components are highest in option 1. As with the development of the
software, more time and money spent on testing and documentation result in a proportionately
better system. Since there is no other use for the software, there are no existing test results or
documentation that can be substituted to save time or money.

The strengths of option 1 are that the source code can be made available for inspection by all
parties and it has no extraneous functions. Certification and confidence building can proceed
from the inspection of the code. The time and resources required to develop, adequately test,
document, and inspect the modules, may be prohibitively high.

Option 2 uses industry-standard COTS software and is, therefore, less costly and time consuming
to develop. The software modules can be expected to work reliably "out of the box." Costs
associated with integration of the individual modules for the COTS software will be higher;
however, based on prior experience scripting COTS software, the additional integration costs
will be small compared to the cost of developing the entire data acquisition and analysis
software.

If testing the COTS software is limited to its functionality used within the AMS, testing costs
will be lower for this option. Testing only the functions used by the system should be acceptable
if they are accompanied by administrative, engineering, and software controls to prevent access
to unused software functionality. Any additional testing costs should also be minimal for this
option because of the manufacturer's prior field testing and its use in applications unrelated to
AMSs. The functionality of the complete system will still need to be tested at the same level as
that of any other option.

The individual components of the COTS software are already well documented, thus reducing
the costs to document a complete AMS system built from COTS modules. The only
documentation costs will be those associated with the small amount of custom software and with
documenting the complete system. However, these costs would also be incurred with option 1.

The relative resource requirements for testing also apply to the resource requirements for
inspection. If inspection is only required for the software functions that are actually used, costs
will be minimized. It is hoped that the need for inspection of each individual software component
can be reduced by building confidence early in the process, when the software is purchased, by
using blind buys and random selection. Any extraneous functionality of the software should be
less of an issue since the rest of the software will have been developed for more generalized (and
widely documented) uses. Additionally, since hundreds or thousands of others use all parts of the
software, any unintended or hidden functionality would most likely have been found.

Finally, future support of custom-designed software relies heavily on access to the developers of
the code. Thus, support may be limited because the number of these developers is limited and
they are often not available to help support an aging code. The simpler this custom-designed
software is, the more likely it is that any problems with the system can be resolved.

6

Conclusions
Option 1, a purely custom-designed (open source) solution, is the traditional approach. It relies
on the deterrent effect of making the source code available to all parties. This deterrent is limited,
however, by the feasibility of inspecting all of the source code necessary to implement the
detector hardware interface and data analysis software as well as that of the required operating
system. Furthermore, developing a reliable, thoroughly tested and well-documented code
requires a substantial investment of resources, which may not be available. While this option has
been used in previous attribute measurement systems[45], the most substantial argument for its
use may be that it can be certified for use on sensitive items by the host country because of
adequate administrative and engineering controls. However, neither the ability to authenticate
such a system nor its reliability has been fully demonstrated.

Option 2 relies more heavily on COTS software, but it has not yet been tried. It relies on the
wide availability of the proposed COTS software to make it unlikely that "backdoors" have been
inserted or exploited by either side. The reliability of the system is supported by extensive field
testing by users in a wide range of activities as well as by the available documentation and
vendor support. By using existing, well-tested software packages, this option will be less costly
in time and money while still providing the required level of data protection.

A potential concern with using option 2 is the role that the US weapons laboratories have had in
the development of the detector hardware interface and data analysis software. An alternative to
using a COTS analysis code is to develop the data acquisition and analysis software in a very
high-level programming language such as Lab VIEW™ or Matlab. This would help avoid the
problem of relying on closed-source software developed at the US weapons laboratories without
requiring that developers start from scratch with respect to the data acquisition and analysis
codes. A simple program that essentially connects a few commercial library functions could be
loaded into the AMS computer module by the host under inspector supervision. However, the
library functions that are needed are not currently available commercially, making a simple
implementation of the gamma analysis algorithm improbable at this time.

The competing needs of software that can be trusted, is reliable, and has acceptable resource
requirements has led us to believe that rejecting all commercial, closed-source software out of
hand is not reasonable. For the LANL AMS project, in portions of the system where the
software is not required to be the primary provider of information protection, preference is given
to commercial software on the basis of its demonstrated reliability and cost effectiveness.

References

1. D. Bracken, L. Carrillo, T. Elmont, K. Frame, K. Hirsch, P. Hypes, J. Kuzminski, R. Landry,
D. MacArthur, D. Mayo, M. Smith, D. Vo "Attribute Measurement System: General
Technical Requirements," Los Alamos National Laboratory Report LA-CP-05-0638, 2005.

2. J. Shergur, D. Bracken, L. Carrillo, T. Elmont, K. Frame, K. Hirsch, P. Hypes, J. Kuzminski,
R. Landry, D. MacArthur, D. Mayo, M. Smith, D. Vo, "An Overview of the Design of a Next
Generation Attribute Measurement System," presented at the TNMM 46th Annual Meeting,
Phoenix, AZ, July 11-14, 2005.

7

3. T. Elmont, D. Bracken, L. Carrillo, K. Frame, K. Hirsch, P. Hypes, J. Kuzminski, R. Landry,
D. MacArthur, D. Mayo, M. Smith, D. Vo "Attribute Measurement System: Concept of
Operations," Los Alamos National Laboratory Report LA-CP-05-0634, 2005.

4. J. K. Wolford, Jr, B. D. Geelhood, V.A. Hamilton, J. frigraham, D.W. MacArthur, DJ.
Mitchell, J. A. Mullens, P.E. Vanier, G.K. White, R. Whiteson, (members of the
Authentication Taskforce, Software Working Group) "Software Authentication," presented at
the INMM 42nd Annual Meeting, Indian Wells, CA, July 15-19, 2001.

5. D.W. MacArthur etal., "Fissile Material Transparancy Technology Demo", March 17, 2001,
Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and Pacific
Northwest National Laboratory. May 25, 2005 <http://www-
safeguards.lanl.gov/FMTT/index main.htm>, Los Alamos National Laboratory Report LA-
UR-01-1091, 2005.

8

http://www
http://safeguards.lanl.gov/FMTT/index

