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ABSTRACT

This paper describes atemplate matching method used by the Nuclear Materids Identification
System (NMIS) to identify wegpons components. The method is applied to NMIS's active source
(°°2C) radiation measurements for HEU components, utilizing four scintillation detectors. NMIS
measures the spatid and temporal distribution of neutron and gamma radiation after a 2>*Cf fission.
This method further processes these measurements to extract pattern recognition festures for the
meatching agorithm, and finds the closest matching component in the NMIS library of reference
component features (templates). Thisidentification method is being developed for use a the Y-12
Nationa Security Complex. The god of this development is to obtain high accuracy with the
congraints of short measurement times and asmall number of reference template measurements.

INTRODUCTION

The Nuclear Materidls |dentification System (NMI1S) uses a >>*Cf source and a stack of two to four
4" plagtic scintillation detectors to perform identification of HEU componentsin containers. The
system uses a Windows PC to do data acquisition and andysis. NMISworkswell for HEU
components because it interrogates the component with high-energy neutrons and gammas from the
252Cf source.

A template matching method matches the measurement of an unknown item to templates of known
types of items. A template representing atype of HEU component is constructed by measuring
severd known components. Then during inventory confirmations, unknown components are
meatched to the template to confirm their type. Matching requires some anaysis because of the
naturd varigion of the measurement result from item to item. It alows shorter measurement times
and some flexibility in equipment operation. Template matching isthe logicd method for inventory
confirmations when templates can be created easily and stored securely.

This method' s development draws on the growing collection of templates and confirmation
measurements at Y12. The method istotaly automated in the sense that the software loads the
individua messurements of the template sets and automatically decides what data from the
measurements should be used to make the matching decisons. This selection is done quickly
enough that it is Smply redone each time the program is Sarted rather than stored for later use.

DATA AND SIGNATURES



The 2>2Cf source is placed on one side of the HEU component container and the detectors are
stacked on the opposite side. The NMIS data acquisition board measures the times a which each
252t fission occurs and the times counts occur in each detector, with 1 nanosecond accuracy, for
millions of counts per second. These Sgnals describe the spatid and tempord distribution of
neutron and gamma radiation coincident with the 2>2Cf fission.

The 2°2Cf and detector pulse data can be represented by atime series for esch signd i, xi(t), that has
the vaue 1 if a pulse occurred during the 1 nanosecond (ns) sampling interval and O otherwise.

NMIS processes this data to produce the correlation between two signasi and j, Cji(t), for each
block of T sampling intervals acquired:

1 T-1t

Cy(t) == @ X (0% (t+1)

wheret = time (sampling interva), and t = delay of interest between detector i count and detector |
count. Cjj(t) isaveraged over al datablocks collected. This corrdlation is actually a coincidence
measurement, which NMIS measures smultaneoudy for dl time skewst between detector signalsi
andj. For example, if thetime of flight of agammaray from the ?°2Cf source to a detector is 3 ns,
C(3) represents the coincidence between the >>>Cf fission and the resuiting gammas reaching the
detector. (For amore detailed description of the correlations see [1].) Datais collected for severa
minutes, during which time roughly 100 million 2°*Cf fissions might take place. Each fissoniis
essentidly a small experiment testing how the HEU component interacts with neutron and gamma
radiation.

Cij(t) isasignature of the HEU component measured because the neutrons and gammeas emitted by
the 2°2Cf source interact with the component as they pass from the source to the detector. NMIS
caculates and uses other sgnatures, most of which have been used at some time for template
matching. This application uses only the correlation between the >2Cf source fission and each of
the four scintillation detectors. Since these signatures require coincidence with the system’ s 2°2Cf
source fisson, they remove other nearby sources of radiation.

The plagtic scintillation detectors are sengtive to both gammarays and neutrons. Matching usesthe
average C;j(t), which can be thought of asthe rate of arrival of radiation a timet ns after a 2>*Cf
fisson. Thefirg arrivas are any gammarays that pass directly through the component at the speed
of light; these are soon followed by scattered gammeas. Directly trangmitted high-energy neutrons
arrive next, followed by lower-energy neutrons, scattered neutrons, products of induced fissonin
the HEU component, and any radiation scattered from the surroundings. Fig. 1 shows
measurements on four auminum blocks used to test the matching method. This measurement
showsthe arriva of gammarays (1 ns) and neutrons (8 — 20+ ns).
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Figure 1 Correlationsfrom four aluminum block measurements.

TEMPLATES

Inthis gpplication, atemplate conssts of a set of correation signatures for some type of HEU
component. The template matching agorithm identifies an unknown HEU component by
comparing the unknown’s correlaion signature to dl of the available templates, and sdecting the
closest matching template as the identity of the unknown. (The unknown has a declared identity,
but the matching agorithm does not consider this) The template st is treeted as samplesfrom a
probability distribution of passible measurements of that type of HEU component. In redity the
measurement has both random and determinigtic eements. The mgor contributors to variationsin
the templ dest ae

The randomness of the 2°>Cf fissions and the radiation interaction with the component

produce anaturd variation. Thisis reduced by measuring for longer times, but not

diminated.

The variations in manua positioning of the >>Cf source and detectors relative to the

component introduce more variation. After careful pogtioning of the NMIS detectors, there

isgtill some variation of the component’s postion in the container.

Measurement equipment caibration setup and drifts introduce some additiona variation.

These are effects are smd| since equipment calibration is checked dally.
Theided template would contain Setistically independent samples. Thiswould require going
through the entire process of setup, cdibration, detector positioning, and measurement, using a
different HEU item of that type and different operators, for each measurement in the template set.



A more expedient process was used to create the initia templates now in use, with some care to
cregte these variations in the template set. 1t was decided to use only tweve fairly short
measurements to congtruct atemplate (and severd templates il have fewer). Statistically
speeking, thisisasmal number from which to estimate the probability ditribution of the
measurements. The results have been satisfactory, but some templates have subsets of related
measurements that clearly form aclugter. This sometimes affects Satistical andyses of the template
Set.

For this gpplication, a different template was created for every pairing of HEU component type with
acontainer tyge Also, measurements made in very different surroundings have separate templates
since some “>“Cf radiation interacts with the surroundings then reaches the detectors.

MATCHING METHODS
The matching methods employed in previous efforts sarted with a smple Mahdanobis distance [2]

comparison. The distance between each template signature and the unknown is in units of standard
deviation of the template Sgnatures:
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wherei and j arethe signa indices and my(t) and s;j(t) are the template’s mean and standard
deviation of Cij(t). Thetota distanceisthe sum of d? over dl t and signd combinaionsij selected
by the andlyst as Sgnatures. The unknown isidentified as the nearest template (smallest distance).
Thistechnique worksrdiably if mand s are known accurately and the unknowns measurement
have the same probability distribution asthe template. But in practice, this technique has problems
unlessthe estimate of s isvery accurate. It isespecidly sengtive to underestimeting s ;(t). This
version of the Mahaanobis distance assumes that the Cj(t) are not correlated with each other, so
thet their covariance meatrix is diagona with each ement being s;(t). The full covariance matrix
version naturdly has even more problems. [shorten this?] The software employs severa techniques
to make the estimate of s;(t) conservative, if selected by the anayst:

Set s to the value required by the randomness of the radiation processif it islower (thisisa

physica lower bound onthetrues).

Set s to thetypica vaue observed for NMIS measurementsif it is lower.

Increase s in proportion to the uncertainty in its vaue, given the number of measurementsin

the template used to estimate it.
This of courseresulted in s jj(t) being overestimated on the average, and did not remove dl of the
problem vaues.

Pedt efforts had found that this technique is much improved by using a nearest neighbor approach.
The unknown is compared to every individua measurement, r, in the template st to find its nearest
neighbor in any template set:
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This approach acknowledges that the variations in the template set are not entirely random. For
example, variations in component position result in reproducible variationsin the geometric
distribution of the measured radiation among the detector. With a nearest neighbor approach, an
unknown measured under the same conditions as one of the template measurements will find a good
match. The template till needs to contain areasonably representative set of such variations, and
the template variance s jj(t ) is till used. Thistechniqueis still available in the software and
generdly identifies the unknown correctly, but this method has not been entirely satisfactory.

Findly a nearest neighbor, non-metric approach with feature weighting has been created. The
unknown U is compared to each pair [m,n] of templates available. If this comparison concludes that
U ismore like template m than template n, a vote againgt template n isrecorded. Template n has, in
essence, been eiminated as a candidate sSince amore likely template has been found. A smple
decison tree employing this process would be single-dimination tournament, inwhich U is

identified with the template that beats al chalengers. This smple approach occasondly fails
because it considers each template decision to be definitive (sngle eimination). In aclose decison
regarding m vs n, m could be diminated incorrectly in favor of n. If subsequent comparisons of n to
other templates show decisively that n iswrong, the single dimination gpproach does not back up
and reconsider m. Reconsderation would be futile if the same criteria were used to make dl
decisons: since m has dready been eliminated by those criteria, the same templates that diminate n
would likdy diminate m dso. But in this gpplication different (optimd) criteria are used for every
individud pair-wise template decison, so m can be accepted when n isrgected. The method
currently being used successtully, but il being studied, evaluates dl of the pair-wise decisions and
keeps track of how many times each template was voted down. The winning template isthe
template with the fewest votes againgt it. The software also assigns aweight to each decision that
reflects vote' s definitiveness, described later. Thistechniqueisaform of Classficatiion And
Regression Tree (CART) [2].

Some HEU components are distinguished by dl of the available Gij(t ), but most are reliably
diginguished only by a subset Fryn. In this gpplication the Bhattacharyya Bound [2] identifies that
subset for every pairing of templates. Consider two templates m and n with their individua Ci(t)
vaues having Gaussan probability digtributions [my, Sm] and [, S ], while the unknown
component’s measured value of Cij(t) isx. Assume the unknown is actualy amember of template
classm. If them and n template probability distributions for C;j(t) overlap, the measurement x has
some probability being closer to template n than its proper template m. The Bhattacharyya Bound is
the upper bound on the error rate for this Stuation, when the decision criterion is Smply that x will

be assigned to the closest template. Thisbound, E, is
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Those Cj;(t) which have abound less than 1% are automatically included in Fn. Thisisaform of
feature weighting. The caculation of this bound uses the troublesome s, but only to make a
conservative judgment on whether to include a particular Cjj(t) in the set of useful features
Software options to correct low s vaues, described above, are fill used, primarily to increase s
when atemplate contains too few measurements. This selection criteriaworks in practice.

The winning template in a pair comparison is the template which has the most unknown Cjj(t)
vaues closer to its template vaues (mogt votes). Ties are handled by lowering the Bhattacharyya
Bound dightly to gather more votes. Since the decison is not based directly on the probability
didribution of the measurements, as the Mahdanobis distance is, it does not depend as heavily on
their being estimated very accurately; thus this method is described as *“non-metric”’. The expected
vote is nearly 100% for the proper class, given the 1% vaue of the bound used to pick the voting
Cij(t). A 50% result is the worst possible result and contributes no information towards a find
match decison. Earlier it was noted that aweight is assigned to these decisons. With N votestota
and V votes for the winning template, this weght wym for the comparison of templatesm and nis

1 _ N-V
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The probability digtribution of votesis the binomid (two-vaue) digribution. The denominator term
is the variance of the vote expected if the actua probability of any vote going to the correct class
were P, and the numerator term is the difference between the actud vote and a 100% vote. This
weight gives lower weight to results that vary from 100% and gives higher weight to results with a
higher number of votes N.

These weights are ca culated for each pair-wise decison made. Each templateisassgned a
“soore’, which is the lowest weight it received in this process. A template that received dl votesin
every comparison (N = V for dl decisons) recaivesinfinite weight; atemplate that was soundly
voted down in ahigh-N vote receives very little weight, regardiess of how wdll it doesin
comparison to other templates. At present, thisweight is used to indicate, in a genera way, the
confidence that the software has in the match it has found.

The nearest neighbor aspect of the method is smilar to the Mahaanobis method described, but
more complicated to calculate because it involves two templates and an unknown rether than one
template and an unknown. The decison ismade by looking at dl parings of the individud
members of the two template sets. Assume two templates containing measurements ng and my in
templatesn and m. The vote taken using nk and m; to represent their templatesis vi. The vote
associated with measurement ny, Vi, IS the worst vote recorded when comparing n to dl of the m.
Smilaly, v; isthe worst vote recorded when comparing m; to dl n.

vk =minv] for al members| of template m,
v =min[vy] for dl membersk of template n.

The winning template is the template with the best member measurement, so thefind voteis



Vv = max[ Vg, vi] for dl membersk and | of templates m and n.

In the case that v is atie vote, the template with the highest percentage of winning membersis
selected.

RESULTS

The matching method is tested againg al templates and confirmation measurements as they become
available. Recently the measurement time was shortened and two of the four detectors were
dropped for some measurements. Thiswas amgor reason for developing a new matching
technique. It also forced a switch to amoving average version of Cjj(t); matching uses Gjj(t)
averaged over seven lags (t). This reduces the variance in Cij due to the random nature of radiation
measurements.

The usud reault isthat the correct template wins dl pair-wise template votes. In some cases, the
correct template has one vote againg it while the others have more votes againgt. To date, smple
steps have been sufficient to match the correct template. Rarely, atie is declared in which the
correct template is one of two possbilities found.

As an example, a data set was made using small auminum blocks between the 2°>Cf source and the
four detectors. Four blocks of different heights were used, designated A through D for the highest
to the shortest. Eight measurements with variations in the positions of the source, detector, and
blocks are the templates A through D; shorter measurements are the unknowns designated Au
through Du. The software sdlected features only from Cy3, the correlation between the 2°2Cf source
and the center detector. Thisisthe best sgnature because the aluminum blocks' “shadow” was
mostly on that detector. Fig. 1 shows these unknown signatures. Thefirst pesk isthe gammaray
transmission peak, and the second is the neutrons of various energies arriving at the detector. The
unknowns might appear to be easily distinguishable by the gamma response, however the variance
of the gamma peak islarge there asit isin other parts of the Sgnature. For example, the A

unknown (Au) is actualy outsde the range found in its template set a the gammapeek. Block D
(Du) ismogt easlly digtinguishable. Template D was judged best for unknown Du by unanimous
votes againg dl other templates. The result for Cu was aso unanimous for template C. Blocks A
and B are very amilar and, in fact, practicdly indigtinguishable in this measurement, using these
sgnaures. Their unknowns Au and Bu are correctly identified, but the vote margin was only 7:3
over B inthe case of Au, and only 6:4 over A in the case of Bul.

FUTURE WORK

In the near term, there will probably be some refinements while the template collection is being
completed. Two possible areas are (1) refining the method by which signatures are selected for use,
(2) replacing the voting scheme with ancther decison function that uses more information about the
templates and unknowns, and (3) using the weight (decisiveness) of each pair-wise template
decison more fully inthefind decison. However, any such refinements that reintroduce template



metrics into the anaysis will be attempted only after an additiond analysis of the templates and
confirmation measurements available.

The matching software caculates awide variety of vaues from the data that could be used with
Cij(t) to identify aHEU component. Most of these have not been tried with the latest matching
method, but we suspect they will help identification.

In the longer term, we will draw on research being done to retrieve the component’ s physica
attributes from the measurements. We will gpply whet is learned there to matching.
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