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ABSTRACT 
 

This paper describes a template matching method used by the Nuclear Materials Identification 
System (NMIS) to identify weapons components.  The method is applied to NMIS’s active source 
(252Cf) radiation measurements for HEU components, utilizing four scintillation detectors.  NMIS 
measures the spatial and temporal distribution of neutron and gamma radiation after a 252Cf fission.  
This method further processes these measurements to extract pattern recognition features for the 
matching algorithm, and finds the closest matching component in the NMIS library of reference 
component features (templates).  This identification method is being developed for use at the Y-12 
National Security Complex.  The goal of this development is to obtain high accuracy with the 
constraints of short measurement times and a small number of reference template measurements.   

 
 

INTRODUCTION 
 
The Nuclear Materials Identification System (NMIS) uses a 252Cf source and a stack of two to four 
4” plastic scintillation detectors to perform identification of HEU components in containers.  The 
system uses a Windows PC to do data acquisition and analysis.  NMIS works well for HEU 
components because it interrogates the component with high-energy neutrons and gammas from the 
252Cf source.   
 
A template matching method matches the measurement of an unknown item to templates of known 
types of items.  A template representing a type of HEU component is constructed by measuring 
several known components.  Then during inventory confirmations, unknown components are 
matched to the template to confirm their type.  Matching requires some analysis because of the 
natural variation of the measurement result from item to item.  It allows shorter measurement times 
and some flexibility in equipment operation.  Template matching is the logical method for inventory 
confirmations when templates can be created easily and stored securely.   
 
This method’s development draws on the growing collection of templates and confirmation 
measurements at Y12.  The method is totally automated in the sense that the software loads the 
individual measurements of the template sets and automatically decides what data from the 
measurements should be used to make the matching decisions.  This selection is done quickly 
enough that it is simply redone each time the program is started rather than stored for later use.   
 
 

DATA AND SIGNATURES 
 



The 252Cf source is placed on one side of the HEU component container and the detectors are 
stacked on the opposite side.  The NMIS data acquisition board measures the times at which each 
252Cf fission occurs and the times counts occur in each detector, with 1 nanosecond accuracy, for 
millions of counts per second.  These signals describe the spatial and temporal distribution of 
neutron and gamma radiation coincident with the 252Cf fission.   
 
The 252Cf and detector pulse data can be represented by a time series for each signal i, xi(t), that has 
the value 1 if a pulse occurred during the 1 nanosecond (ns) sampling interval and 0 otherwise.  
NMIS processes this data to produce the correlation between two signals i and j, Cij(τ), for each 
block of T sampling intervals acquired:  
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where t = time (sampling interval), and τ = delay of interest between detector i count and detector j 
count.  Cij(τ) is averaged over all data blocks collected.  This correlation is actually a coincidence 
measurement, which NMIS measures simultaneously for all time skews τ between detector signals i 
and j.  For example, if the time of flight of a gamma ray from the 252Cf source to a detector is 3 ns, 
C(3) represents the coincidence between the 252Cf fission and the resulting gammas reaching the 
detector.  (For a more detailed description of the correlations see [1].)  Data is collected for several 
minutes, during which time roughly 100 million 252Cf fissions might take place.  Each fission is 
essentially a small experiment testing how the HEU component interacts with neutron and gamma 
radiation.   
 
Cij(τ) is a signature of the HEU component measured because the neutrons and gammas emitted by 
the 252Cf source interact with the component as they pass from the source to the detector.  NMIS 
calculates and uses other signatures, most of which have been used at some time for template 
matching.  This application uses only the correlation between the 252Cf source fission and each of 
the four scintillation detectors.  Since these signatures require coincidence with the system’s 252Cf 
source fission, they remove other nearby sources of radiation.   
 
The plastic scintillation detectors are sensitive to both gamma rays and neutrons.  Matching uses the 
average Cij(τ), which can be thought of as the rate of arrival of radiation at time τ ns after a 252Cf 
fission.  The first arrivals are any gamma rays that pass directly through the component at the speed 
of light; these are soon followed by scattered gammas.  Directly transmitted high-energy neutrons 
arrive next, followed by lower-energy neutrons, scattered neutrons, products of induced fission in 
the HEU component, and any radiation scattered from the surroundings.  Fig. 1 shows 
measurements on four aluminum blocks used to test the matching method.  This measurement 
shows the arrival of gamma rays (1 ns) and neutrons (8 – 20+ ns).   
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Figure 1 Correlations from four aluminum block measurements. 

 
TEMPLATES 

 
In this application, a template consists of a set of correlation signatures for some type of HEU 
component.  The template matching algorithm identifies an unknown HEU component by 
comparing the unknown’s correlation signature to all of the available templates, and selecting the 
closest matching template as the identity of the unknown.  (The unknown has a declared identity, 
but the matching algorithm does not consider this.)  The template set is treated as samples from a 
probability distribution of possible measurements of that type of HEU component.  In reality the 
measurement has both random and deterministic elements.  The major contributors to variations in 
the template set are:  

• The randomness of the 252Cf fissions and the radiation interaction with the component 
produce a natural variation.  This is reduced by measuring for longer times, but not 
eliminated. 

• The variations in manual positioning of the 252Cf source and detectors relative to the 
component introduce more variation.  After careful positioning of the NMIS detectors, there 
is still some variation of the component’s position in the container.   

• Measurement equipment calibration setup and drifts introduce some additional variation.  
These are effects are small since equipment calibration is checked daily.   

The ideal template would contain statistically independent samples.  This would require going 
through the entire process of setup, calibration, detector positioning, and measurement, using a 
different HEU item of that type and different operators, for each measurement in the template set.   
 



A more expedient process was used to create the initial templates now in use, with some care to 
create these variations in the template set.  It was decided to use only twelve fairly short 
measurements to construct a template (and several templates still have fewer).  Statistically 
speaking, this is a small number from which to estimate the probability distribution of the 
measurements.  The results have been satisfactory, but some templates have subsets of related 
measurements that clearly form a cluster.  This sometimes affects statistical analyses of the template 
set.   
 
For this application, a different template was created for every pairing of HEU component type with 
a container type.  Also, measurements made in very different surroundings have separate templates 
since some 252Cf radiation interacts with the surroundings then reaches the detectors.   
 
 

MATCHING METHODS 
 
The matching methods employed in previous efforts started with a simple Mahalanobis distance [2] 
comparison.  The distance between each template signature and the unknown is in units of standard 
deviation of the template signatures:  
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where i and j are the signal indices and µij(τ) and σij(τ) are the template’s mean and standard 
deviation of Cij(τ).  The total distance is the sum of d2 over all τ and signal combinations ij selected 
by the analyst as signatures.  The unknown is identified as the nearest template (smallest distance).  
This technique works reliably if µ and σ are known accurately and the unknowns’ measurement 
have the same probability distribution as the template.  But in practice, this technique has problems 
unless the estimate of σ is very accurate.  It is especially sensitive to underestimating σij(τ).  This 
version of the Mahalanobis distance assumes that the Cij(τ) are not correlated with each other, so 
that their covariance matrix is diagonal with each element being σij(τ).  The full covariance matrix 
version naturally has even more problems. [shorten this?] The software employs several techniques 
to make the estimate of σij(τ) conservative, if selected by the analyst: 

• Set σ to the value required by the randomness of the radiation process if it is lower (this is a 
physical lower bound on the true σ).   

• Set σ to the typical value observed for NMIS measurements if it is lower.   
• Increase σ in proportion to the uncertainty in its value, given the number of measurements in 

the template used to estimate it.   
This of course resulted in σij(τ) being overestimated on the average, and did not remove all of the 
problem values.   
 
Past efforts had found that this technique is much improved by using a nearest neighbor approach.  
The unknown is compared to every individual measurement, r, in the template set to find its nearest 
neighbor in any template set: 
 



( ) ( )
)(

)()(
2

2

2

τσ

ττ
τ

ij

ijij
ij

rC
d

−
=  

 
This approach acknowledges that the variations in the template set are not entirely random. For 
example, variations in component position result in reproducible variations in the geometric 
distribution of the measured radiation among the detector.  With a nearest neighbor approach, an 
unknown measured under the same conditions as one of the template measurements will find a good 
match.  The template still needs to contain a reasonably representative set of such variations, and 
the template variance σij(τ) is still used.  This technique is still available in the software and 
generally identifies the unknown correctly, but this method has not been entirely satisfactory.   
 
Finally a nearest neighbor, non-metric approach with feature weighting has been created.  The 
unknown U is compared to each pair [m,n] of templates available.  If this comparison concludes that 
U is more like template m than template n, a vote against template n is recorded.  Template n has, in 
essence, been eliminated as a candidate since a more likely template has been found.  A simple 
decision tree employing this process would be single-elimination tournament, in which U is 
identified with the template that beats all challengers.  This simple approach occasionally fails 
because it considers each template decision to be definitive (single elimination).  In a close decision 
regarding m vs n, m could be eliminated incorrectly in favor of n.  If subsequent comparisons of n to 
other templates show decisively that n is wrong, the single elimination approach does not back up 
and reconsider m.  Reconsideration would be futile if the same criteria were used to make all 
decisions: since m has already been eliminated by those criteria, the same templates that eliminate n 
would likely eliminate m also.  But in this application different (optimal) criteria are used for every 
individual pair-wise template decision, so m can be accepted when n is rejected.  The method 
currently being used successfully, but still being studied, evaluates all of the pair-wise decisions and 
keeps track of how many times each template was voted down.  The winning template is the 
template with the fewest votes against it.  The software also assigns a weight to each decision that 
reflects vote’s definitiveness, described later.  This technique is a form of Classification And 
Regression Tree (CART) [2].   
 
Some HEU components are distinguished by all of the available Cij(τ), but most are reliably 
distinguished only by a subset Fmn.  In this application the Bhattacharyya Bound [2] identifies that 
subset for every pairing of templates.  Consider two templates m and n with their individual Cij(τ) 
values having Gaussian probability distributions [µm, σm] and [µn, σn], while the unknown 
component’s measured value of Cij(τ) is x.  Assume the unknown is actually a member of template 
class m.  If the m and n template probability distributions for Cij(τ) overlap, the measurement x has 
some probability being closer to template n than its proper template m.  The Bhattacharyya Bound is 
the upper bound on the error rate for this situation, when the decision criterion is simply that x will 
be assigned to the closest template.  This bound, E, is:  
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Those Cij(τ) which have a bound less than 1% are automatically included in Fmn.  This is a form of 
feature weighting.  The calculation of this bound uses the troublesome σ, but only to make a 
conservative judgment on whether to include a particular Cij(τ) in the set of useful features.  
Software options to correct low σ values, described above, are still used, primarily to increase σ 
when a template contains too few measurements.  This selection criteria works in practice.   
 
The winning template in a pair comparison is the template which has the most unknown Cij(τ) 
values closer to its template values (most votes).  Ties are handled by lowering the Bhattacharyya 
Bound slightly to gather more votes.  Since the decision is not based directly on the probability 
distribution of the measurements, as the Mahalanobis distance is, it does not depend as heavily on 
their being estimated very accurately; thus this method is described as “non-metric”.  The expected 
vote is nearly 100% for the proper class, given the 1% value of the bound used to pick the voting 
Cij(τ).  A 50% result is the worst possible result and contributes no information towards a final 
match decision.  Earlier it was noted that a weight is assigned to these decisions.  With N votes total 
and V votes for the winning template, this weight wnm  for the comparison of templates m and n is:   
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The probability distribution of votes is the binomial (two-value) distribution.  The denominator term 
is the variance of the vote expected if the actual probability of any vote going to the correct class 
were P, and the numerator term is the difference between the actual vote and a 100% vote.  This 
weight gives lower weight to results that vary from 100% and gives higher weight to results with a 
higher number of votes N.   
 
These weights are calculated for each pair-wise decision made.  Each template is assigned a 
“score”, which is the lowest weight it received in this process.  A template that received all votes in 
every comparison (N = V for all decisions) receives infinite weight; a template that was soundly 
voted down in a high-N vote receives very little weight, regardless of how well it does in 
comparison to other templates.   At present, this weight is used to indicate, in a general way, the 
confidence that the software has in the match it has found.   
 
The nearest neighbor aspect of the method is similar to the Mahalanobis method described, but 
more complicated to calculate because it involves two templates and an unknown rather than one 
template and an unknown.  The decision is made by looking at all pairings of the individual 
members of the two template sets.  Assume two templates containing measurements nk and ml in 
templates n and m.  The vote taken using nk and ml to represent their templates is vkl.  The vote 
associated with measurement nk, vk, is the worst vote recorded when comparing nk to all of the ml.  
Similarly, vl is the worst vote recorded when comparing ml to all nk.   
 

vk = min[vkl] for all members l of template m, 
vl = min[vkl] for all members k of template n. 

 
The winning template is the template with the best member measurement, so the final vote is:   



 
v = max[vk, vl] for all members k and l of templates m and n. 

 
In the case that v is a tie vote, the template with the highest percentage of winning members is 
selected.   
 
 

RESULTS 
 
The matching method is tested against all templates and confirmation measurements as they become 
available.  Recently the measurement time was shortened and two of the four detectors were 
dropped for some measurements.  This was a major reason for developing a new matching 
technique.  It also forced a switch to a moving average version of Cij(τ); matching uses Cij(τ) 
averaged over seven lags (τ).  This reduces the variance in Cij due to the random nature of radiation 
measurements.   
 
The usual result is that the correct template wins all pair-wise template votes.  In some cases, the 
correct template has one vote against it while the others have more votes against.  To date,  simple 
steps have been sufficient to match the correct template.  Rarely, a tie is declared in which the 
correct template is one of two possibilities found.   
 
As an example, a data set was made using small aluminum blocks between the 252Cf source and the 
four detectors.  Four blocks of different heights were used, designated A through D for the highest 
to the shortest.  Eight measurements with variations in the positions of the source, detector, and 
blocks are the templates A through D; shorter measurements are the unknowns designated Au 
through Du.  The software selected features only from C13, the correlation between the 252Cf source 
and the center detector.  This is the best signature because the aluminum blocks’ “shadow” was 
mostly on that detector.  Fig. 1 shows these unknown signatures.  The first peak is the gamma ray 
transmission peak, and the second is the neutrons of various energies arriving at the detector.  The 
unknowns might appear to be easily distinguishable by the gamma response, however the variance 
of the gamma peak is large there as it is in other parts of the signature.  For example, the A 
unknown (Au) is actually outside the range found in its template set at the gamma peak.  Block D 
(Du) is most easily distinguishable.  Template D was judged best for unknown Du by unanimous 
votes against all other templates.  The result for Cu was also unanimous for template C.  Blocks A 
and B are very similar and, in fact, practically indistinguishable in this measurement, using these 
signatures.  Their unknowns Au and Bu are correctly identified, but the vote margin was only 7:3 
over B in the case of Au, and only 6:4 over A in the case of Bu.   
 

FUTURE WORK 
 
In the near term, there will probably be some refinements while the template collection is being 
completed.  Two possible areas are (1) refining the method by which signatures are selected for use, 
(2) replacing the voting scheme with another decision function that uses more information about the 
templates and unknowns, and (3) using the weight (decisiveness) of each pair-wise template 
decision more fully in the final decision.  However, any such refinements that reintroduce template 



metrics into the analysis will be attempted only after an additional analysis of the templates and 
confirmation measurements available.   
 
The matching software calculates a wide variety of values from the data that could be used with 
Cij(τ) to identify a HEU component.  Most of these have not been tried with the latest matching 
method, but we suspect they will help identification.   
 
In the longer term, we will draw on research being done to retrieve the component’s physical 
attributes from the measurements.  We will apply what is learned there to matching.   
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