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ABSTRACT. Negotiated deeper cuts in the nuclear arsenals may place limits on the total
number of nuclear weapons in states’ stockpiles, which could require inspections on hundreds
or thousands of warheads or warhead components currently in storage or in dismantlement
queues. The process of authenticating treaty limited items, e.g. with passive or active radia-
tion measurements, is likely to be a critical element of verified disarmament. We have been
developing a template-matching approach under which, for maximum security, classified in-
formation is never measured or stored electronically during the inspection. While one-on-one
measurements (template versus inspected item) are feasible, such a system would strongly
benefit from optimized sampling strategies authenticating as many items as possible with
minimum probabilities for cheating. This paper proposes and examines the effectiveness of a
strategy for authenticating nuclear warheads with a particular emphasis on controlling false
positive and false negative rates of the inspections.

Background

Future reductions in the nuclear arsenals may place limits on the total number of
nuclear weapons in states’ stockpiles. Verification of such agreements could require in-
spections of hundreds or perhaps even thousands of warheads or warhead components
currently in storage or in dismantlement queues. Under these circumstances, strategies
to authenticate large number of items efficiently may become highly desirable. Inspec-
tions could be based on both the attribute or the template approach,1 and both may
have to deal with false positives (i.e., valid items declared bad) and false negatives (i.e.,
invalid items declared good). So far, proposed authentication systems have envisioned
a single basic test that an item can either pass or fail.2 Such basic tests, however, may
have inherent technical limitations to achieve sufficiently low false-positive and false-
negative rates in line with potential treaty verification objectives. To address this issue,
we propose in this paper a formal protocol that determines how many times an item
needs to be retested before it can be declared good or bad based on confidence levels
chosen by the host and the inspector.3 Below, we develop and discuss the method,
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illustrate sample results for a honest and a dishonest host with a particular emphasis
on a template approach using a zero-knowledge protocol.

Methodology

We seek to distinguish between valid items and invalid items offered for inspection. We
will do so by repeatedly applying a basic test to each item, until every item is declared
either good or bad. We assume that the basic test is an (α, β) test, which means that
the test will output pass with probability of at least α if a valid item is presented,
while it will output pass with probability of at most β (with β < α) if an invalid item
is presented. We want to design a repetition strategy for this basic test such that a
valid item will be declared good with probability of at least α∗ > α, while an invalid
item will be declared good with probability of at most β∗ < β. For a viable inspection
protocol, we will want α∗ to be very close to 1 so that, in the honest-host case, with
high probability all items are declared good. Similarly, in the dishonest-host (diversion)
case, we will want that with high probability (1− β∗) an invalid item is declared bad.
In sum, the four critical parameters are:

α : probability that valid item passes basic test (e.g. 0.95)
β : probability that invalid item passes basic test (0.05–0.10, but can be higher)

α∗: probability that valid item is declared good (host wants high, e.g. 0.99)
β∗: probability that invalid item is declared good (inspectors wants low, e.g. 0.10)

We build our formalism on statistical inference theory and proceed as follows. Suppose
that X1, X2, . . . , Xn are n independent and identically distributed Bernoulli trials, i.e.,
random experiments with exactly two possible outcomes with constant probabilities
p and q = 1 − p, representing a sequence of n (α, β) tests. We start by defining two
statistical hypothesis tests.

First, to declare an item good: Let H0 : θ = β and H1 : θ = α and β < α, we reject the
null hypothesis, H0 : the item is invalid, in favor of H1 : the item is valid and declare
the item good, if P ≥ kP where P is the number of pass in the sequence of n trials and
kP is a threshold chosen so that the probability of declaring the item good when it is
in fact invalid is Prob(P ≥ kP |H0) ≤ β∗.

Similarly, to declare an item bad: Let H0 : θ = (1− α) and H1 : θ = (1− β), we reject
the null hypothesis, H0 : the item is valid, in favor of H1 : the item is invalid and declare
the item bad, if F ≥ kF where F is the number of fail in the sequence of n trials and
kF is a threshold chosen so that the probability of declaring the item bad when it is
valid is Prob(F ≥ kF |H0) ≤ 1− α∗.
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Tests are designed such that an item cannot be declared good and bad at the same time.
It can be proven that both hypothesis tests are equivalent to performing likelihood-
ratio tests on a sequence of n Bernoulli trials,4 and that both are the most powerful
tests available to accept valid items and reject invalid ones.5

We continue our analysis by specifying a set of (α, β, α∗, β∗) values to generate a simple
scorecard (Figure 1, left), showing the number of passed and failed basic tests. For every
(P, F ) position (with n = P +F ), we check the following two inequalities based on the
cumulative binomial probability:

n∑
i=P

(
n

i

)
βi (1− β)n−i ≤ β∗ and

n∑
i=F

(
n

i

)
(1− α)i αn−i ≤ 1− α∗

If the left inequality is true, we assign good; if the right inequality is true, we assign
bad; all other positions remain inconclusive. We then search for the optimum number
nopt so that every sequence of basic tests with length nopt will unambiguously declare
items good or bad, i.e., never inconclusive. We choose nopt = ninc + 1, where ninc =
Pinc + Finc is the number of tests needed to reach the inconclusive field with highest n,
for example, the position (Pinc = 2, Finc = 3) in Figure 1, left.6 Finally, we use n = nopt
to generate a reduced scorecard. On this scorecard, an item will be declared good as
soon as P ≥ kP = Pinc + 1 and bad as soon as F ≥ kF = Finc + 1 (see Figure 1, right,
and Figure 5 in the Appendix). This method guarantees that an invalid item is never
declared good with probability higher than β∗ and that a valid item is never declared
bad with probability higher than (1− α∗).

Results

We distinguish two general situations: in the first case, the host is honest and all items
are valid; in the second case, the host is cheating and at least one of the items offered
for inspection is invalid. Of course, the inspector does not know which type of game is
being played.

To illustrate the results below, we use a default parameter set to illustrate typical
inspection outcomes. Any viable inspection system should be characterized by a basic
test that passes a valid item with high probability α, but the value of β depends on the
particular diversion scenario. In general, the higher the degree of similarity between the
valid and the invalid item, the higher the value of β, and the more difficult to correctly
declare the item bad in a basic test. Ultimately the value of β will depend on the agreed
least detectable diversion of interest and the discrimination capability of the basic test.
We use the reference values α = 0.95 and β = 0.05.
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Figure 1: Left: Simple scorecard with results of hypothesis testing for every position (P, F )
with n = P + F (green is good, red is bad, and yellow is inconclusive). The probabilities
to reach each position are given for both valid (top number) and invalid (bottom number)
items. Right: Reduced scorecard obtained by using n = nopt, the optimum number of basic
tests, for every position. Probabilities to reach positions, where item are declared good and
bad are given for both valid (top) and invalid (bottom) items.

Stopping criteria for the inspection depend on specific requirements set by the host and
the inspector. In general, the honest host will require a high value for α∗ to make sure
that valid items are not incorrectly declared bad; similarly, the inspector will require
a low value for β∗ to make sure that a very low fraction of invalid items slip through.
We use the reference values α∗ = 0.999 and β∗ = 0.01 for stopping an inspection, but
other values can be agreed upon by host and inspector.

Honest Host

In the case of the honest host, all items are valid, and the inspection should generally
proceed smoothly. Figure 2 shows a typical realization for one hundred items and using
the default values for (α, β, α∗, β∗) during the inspection. Naturally, the honest host
wants to avoid a situation where a valid item is declared bad. The odds of this outcome
can be decreased by increasing the value of α∗, which requires additional testing. Table
1 summarizes the sensitivity of the inspection effort, i.e., the number of basic tests per
item, for different stopping criteria. For β < 0.40, it is possible to reduce the probability
of valid items being declared bad (e.g. from 0.001 to 0.0001) using only one additional
inspection per item. For β = 0.05, only 3.2 tests are required to achieve 0.01% valid
items being declared bad.
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Dishonest (Cheating) Host

If the host is dishonest and tries to cheat by introducing one or more invalid items,
it is best to analyze the situation from the inspector’s perspective. The inspector is
particularly worried about invalid items that are possibly declared good. Figure 3 shows
a typical realization for the default values, and Table 2 shows the sensitivity of the
inspection effort for different stopping criteria determined by the value of β∗. Similar
to the case of the honest host, 1–2 additional basic tests per item can make a significant
difference, especially for β < 0.2. Note that β∗ represents the probability of missing
one individual item; if more than one invalid item is in the batch, then the chances of
finding at least one of them increases significantly.

Probability that invalid item passes basic test (β)
0.01 0.05 0.10 0.20 0.30 0.40 0.50

Stopping criterion 0.01 2.1 3.2 3.2 5.3 8.4 10.5 15.8
(1− α∗) 0.001 2.1 3.2 4.2 6.3 8.4 13.7 17.9

(Valids declared “bad”) 0.0001 2.1 3.2 4.2 7.4 9.5 14.7 21.1

Table 1: Lookup table for honest host listing the average number of tests per item before
the inspection stops. Columns indicate performance of the basic test (β, probability that an
invalid item passes basic test, which depends on the similarity of the invalid item compared
to the valid item); rows indicate the probability (1− α∗) that a valid item is declared bad,
i.e., the chances of an undesirable outcome for the host. Results are based on Monte Carlo
simulations using the default values α = 0.95 and β∗ = 0.01.

Probability that invalid item passes basic test (β)
0.01 0.05 0.10 0.20 0.30 0.40 0.50

Stopping criterion 0.1 1.05 2.1 2.1 3.2 5.3 7.4 10.5
(β∗) 0.01 2.1 3.2 4.2 6.3 8.4 13.7 17.9

(Invalids declared “good”) 0.001 2.1 4.2 5.3 8.4 11.6 16.8 25.3

Table 2: Lookup table for inspector listing the average number of tests per item before the
inspection stops. Columns indicate performance of the basic test (β, probability that an
invalid item passes basic test, which depends on the similarity of the invalid item compared
to the valid item); rows indicate the probability that an invalid item is declared good (β∗),
i.e., the chances of an undesirable outcome for the inspector. Results are based on Monte
Carlo simulations using the default values α = 0.95 and α∗ = 0.999.
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Figure 2: Testing a batch of one hundred valid items. In this particular realization, after five
rounds and 313 basic tests, the inspection stops and clears all items. Parameters used for
this realization: α = 0.95, β = 0.05, α∗ = 0.999, β∗ = 0.01.

Figure 3: Testing a batch of one hundred items that includes, unknown to the inspector,
three invalid items, which are highlighted (x) in the first panel. In this particular realization,
after four rounds and 312 total tests, the inspection stops identifying all three invalid items
correctly. Parameters used for this realization: α = 0.95, β = 0.05, α∗ = 0.999, β∗ = 0.01.
For this value of β∗, the probability of catching all three invalid items is about 97%; the
probability of catching at least one of them is greater than 99.999% (assuming uncorrelated
statistical errors).
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Special Case: Zero-knowledge Template Approach

We have previously proposed a template-matching approach under which, for maximum
security, classified information is never measured. The details of our basic (one-on-one)
approach have been described elsewhere.7 As with all template approaches, prior to
the inspection, a template could be selected at a deployment site in order to have
high confidence in the authenticity of the item. The template is then placed in a
storage container and, with strong chain-of-custody measures, brought to a dedicated
dismantlement facility, where the containerized warheads slated for dismantlement are
also located. For the basic one-on-one approach, the host prepares pairs of preloaded
detectors, which are arranged in two arrays. Critically, the inspector then chooses
which array is used on which item. Preloads are secretly determined by an honest host
such that, after the irradiation, the detector count obtained by any measurement on
the template or on any valid submitted item is distributed according to the Poisson
distribution with mean equal to a previously agreed-on value. This value is known in
advance by both sides. Therefore, neither the measurement nor its noise reveals any
new information.

Given that, for this basic one-on-one approach, the template is directly compared
against each inspected item individually, we would have to generate the reference
signature in every single authentication process. This could pose various challenges,
in particular for the situation described above, where it would be advantageous to
authenticate many identical items as efficiently as possible. Using the methodology de-
veloped above, we propose a strategy to inspect a batch of N items simultaneously to
check if all these items, including the template, are identical.

We assume that K ≥ 1 templates are available and that, by definition, confidence in the
authenticity of these templates is high. With regard to the inspection protocol, there
is no qualitative difference between templates and the items offered for inspection. In
fact, as we will see, the template may be eliminated from the batch of N items early on.
Critically, the host prepares in advance preloads for all the basic tests we will need to
perform. For example, if N items are in the batch and, on average, each item will not be
tested more than four times, then (4×N) preloaded detectors (or detector arrays) will
need to be provided at the outset of the inspection. Depending on the type of detector,
this preparation could be challenging.8 Through this commitment, the host does not
gain anything, and can in fact lose, from using unequal preloads (with the intention
of concealing one or more invalid items in the batch), and hence we can assume the
preloads are all identical. Preloads could also be validated through testing randomly
selected detectors on the template(s) prior to inspection. Figure 4 shows the outcome
of a typical inspection, which includes 99 items offered for inspection and one template.
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Figure 4: Testing a batch of one hundred items that includes one template (T) and, unknown
to the inspector, five invalid items (x). In this particular realization, after six rounds of
testing, all five invalid items have been found and declared bad. Overall, 324 basic tests
are needed for this realization. Parameters used for this realization: α = 0.95, β = 0.05,
α∗ = 0.999, β∗ = 0.01.

Conclusion

In this paper, we have proposed a formal protocol that can be used to control the
probabilities of inspection failures for efficient nuclear warhead authentication. Based
on the likelihood-ratio method, the protocol can be used for both attribute-type and
template-type measurements; it is particularly useful when large numbers of identical
items have to be authenticated and when measurement outcomes are communicated in
a pass/fail manner, for example through an information barrier. The protocol allows the
host and the inspector to adjust testing parameters such that both achieve their desired
performance requirements with a minimum inspection effort: generally, the honest host
wants few if any valid items declared bad, while the inspector wants few if any invalid
items declared good. For an efficient inspection process, the probability β of an invalid
item passing a basic test needs to be as low as possible. This probability, however,
depends on the particular diversion scenario and cannot be defined independently. We
find that values for β of up to 0.2–0.3 may be acceptable; above this range, the number
of required test repetitions increases sharply. Further research needs to determine the
potential impact of systematic errors, which have not been considered in this analysis,
and the tradeoffs between repeated tests and longer individual inspections (i.e., with
better statistics for radiation measurements), which also reduce the false positive and
false negative rates.
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Appendix

Figure 5: Scorecards for selected β and β∗ values.
(α = 0.95 and α∗ = 0.999)
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