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Introduction 
The Reflective Particle Tag (RPT) is a next generation of tag technology developed with 

the goal of providing both a unique identifier and visual evidence of tampering.  They are 

resin tags infused with reflective crystals that are placed over sensitive seals.  Our goal is 

to develop a verification routine based on image processing that verifies the original set 

of images (gallery), of an RPT, against a set taken at a later time (probe).  Each set 

contains images taken by illuminating the RPT from a number of orientations, creating 

different views due to crystal reflections. In this paper, we describe an algorithm for RPT 

verification using state-of-the-art computer vision techniques and discuss future work to 

help identify low-evidence tampering. 

RPT Verification Algorithm 
We propose a multi-step approach for RPT image verification.  We start by finding the 

corresponding image pairs from the gallery and probe image sets that share the same 

lighting orientation.  For each corresponding pair, we attempt to find a geometric 

relationship between the images using techniques from the field of wide baseline 

matching (WBM).  If a geometric relationship is found, it is then tested to ensure that it 

meets a rigorous criterion.  If the geometric relationship meets this criterion, the two 

images are subtracted to look for any evidence of tampering.  Finally, we ensure that all 

image pairs are verified correctly.  A flowchart of our algorithm is shown in Figure 1. 
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Figure 1:  Flow chart for RPT image-based verification 

 

Currently, we have only implemented and tested the geometric matching and affine 

transformation testing steps.  In the following sections we discuss the implementation and 

testing of these steps.  We will discuss our ideas on the remaining steps in the Future 

Work section. 

Wide Baseline Matching 

WBM is a widely studied and validated paradigm of computer vision that locates 

identical features across a set of images of the same object.  The locations of 

corresponding features are then used to solve for the geometric relationship between the 

two images.  While varying widely in design, WBM algorithms all share three key 

elements:   

 

1. feature detectors that can repeatably locate the same feature in different images 

under varying conditions; 

2. feature descriptors that characterize features, and their local area, in a way that 

will return the same or very similar values under varying viewing conditions, and 

3. methods that identify feature correspondences and their associated geometric 

organization, which ensure a high probability match.   
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WBM applies well to the RPT problem because it will reliably fail if the RPT is 

completely different or severely changed, but is effective for small, expected changes 

such as weathering or small, inadvertent damage.  The next three sections detail the 

specific algorithms we used for feature detection, descriptor creation, and geometric 

correspondence. 

Feature Extraction 

We chose the maximally stable extremal region (MSER) algorithm as our feature 

detector.  The MSER algorithm searches for connected areas of common intensity in the 

image[1].  These areas remain detectable across a wide array of image transformations 

and illumination changes.  This algorithm has been shown to provide the best, general 

performance among the current slate of feature detection algorithms [2].   

 

The MSER algorithm works by iterating through each pixel intensity value [0-255] and 

identifying all pixels with an intensity that is less than or equal.  Neighboring pixels that 

pass this test are grouped together, and the size of the group is tracked across the 

iteration.   When the iteration is complete, the algorithm examines the growth curve for 

each pixel group and identifies points in the curve when the group maintained a stable 

size over a large range of pixel values.  For each identified point in the curve, the set of 

pixels that belonged to the group, at that point, are selected as a feature.  Each feature is 

extracted by taking the region of the image inside the best-fit enclosing ellipse for the 

identified group of pixels.  The algorithm is then repeated while iterating intensity values 

in the opposite direction [255-0] to ensure that both dark and light MSERS are extracted.  

Figure 2 displays a RPT image marked with a small subset of the extracted MSERS 

marked in red. 

 

 
Figure 2:  RPT image with detected MSERS marked in red (1,000 of 12,215 shown). 
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Descriptor Creation and Matching 

Given sets of extracted features for two images, the next step is to find corresponding 

features between the images.  We can not compare the features directly due to 

translations, rotations, and scaling that may exist between the images.  Therefore, we 

convert the extracted features to a form that removes these issues.  This is accomplished 

by converting the feature region into a vector of values called a descriptor.  The standard 

method for creating descriptors is the scale invariant feature transform (SIFT) [2][3].  

SIFT descriptors are 128 value vectors, independent of image rotation, scale, and 

illumination, and therefore, directly comparable. 

 

To create a SIFT descriptor, we take the image feature and reshape it into a 16x16 square 

patch, effectively removing scale.  For each pixel in this patch, we calculate the 

magnitudes and orientations of the gradients.  A histogram is created for the orientations 

and the largest bin is designated as the dominant orientation.  The feature patch is rotated 

to align with the dominant orientation which removes rotation.  The transformed patch is 

divided into 16 individual blocks of 4x4 pixels and an 8-directional histogram is created 

for each by binning the gradient magnitudes and orientations.  These 16 separate 8-

directional histograms then combined into a single 128 value vector.  The descriptor 

values are normalized to help reduce the effects of illumination changes.   

 

Each image is now defined by a set of SIFT descriptors and their associated pixel 

position.  We generate correspondences between the images by identifying the SIFT 

descriptors most closely matched.  Descriptor comparison is done via simple n-

dimensional Euclidean distance.  Only descriptor matches that meet a certain distance 

threshold are considered good matches.  In addition, we require that the best match for a 

descriptor must be 20% better than the second best match.  This helps avoid confusion 

when multiple descriptors look very similar.  This set of feature matches becomes the 

input to the final step of WBM which searches for a geometric relationship between the 

images. 

Geometric Matching 

We use the random sample consensus (RANSAC) algorithm to solve for a geometric 

relationship between a set of corresponding feature matches.  In the case of RPT 

verification, the geometric relationship we are searching for is an affine transform that 

allows for translation, scaling, and rotation.  An affine transformation can be generated 

for any set of three positional correspondences using a standard least-squares approach. 

 

RANSAC starts by randomly selecting three feature matches from the set and generating 

an affine transformation based on the corresponding pixel positions.  All remaining 

feature matches are checked against this affine transform by projecting each pixel 

position from the first image, via the transform, into the second.  The location of the 

projected pixel position is compared to its expected location using Euclidean distance.  If 

that distance falls under a defined threshold, in our case one pixel, it is added to the 

consensus set of supporting feature matches.  This process is iterated to ensure high 

confidence that a good model will be sampled if it exists.  The affine transform with the 

largest consensus set is returned as the solution.   
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RANSAC will always produce a solution with a minimum consensus set size of three.  

Usually, only RANSAC results with a large consensus set size are considered good.  

Therefore, we need to perform an additional step to verify the RANSAC output.    

Affine Transformation Filtering 

The final step in our RPT verification method is to ensure that the solution produced by 

the geometric matching algorithm meets a rigorous criterion.  In RPT verification, we 

expect only very small transformations between images because fiducials are used to line 

up the camera during image acquisition.  We apply a polar decomposition to break the 

affine transformation back into its constituent translation, scale, and rotation components.  

These values are compared against thresholds to ensure that they conform to our 

expectation of a limited amount of translation, very small rotation, and almost no scaling 

of any kind.   

RPT Verification Experiments and Results 
We were provided with a database of 4932 images made up of multiple images of 244 

RPTs taken at four different lighting orientations:  upper left, lower left, upper right, and 

lower right.  An RPT image should only verify against another image if it is of the same 

RPT taken at the same lighting orientation. 

Test 1 

In our first test, we explored the performance of the geometric matching technique by 

itself.  We chose one image for each of the 244 RPTs, at a random selected lighting 

orientation, and attempted verification against all images in the database.  This resulted in 

1,203,408 RPT verifications.  We create a measure called “match percentage” by taking 

the ratio of the consensus set size of the geometric solution to the total number of features 

extracted from the probe image.  This allows us to fairly compare the results of the 

geometric matching algorithm across different images.  The summary statistics for the 

Test 1 are shown in Table 1. 

 
 Number of 

Examples 

Mean match % Match % STD Min Match % Max Match % 

Matching 

RPTs 

1005 45.47% 6.4% 3.28% 55.42% 

Non-Matching 

RPTs 

1192297 0.02% 5.2e-5% 0.01% 0.46% 

 Table 1:  Results of Verification Tests without Affine Transformation Filtering 

 

In these results, we use the term “Matching RPTs” to refer to all verifications that should 

pass because the images are of the same RPT at the same lighting orientation.  The term 

“Non-Matching RPTs” refers to all verifications that should fail.  The results show that 

the geometric matching algorithm performs very well.  The mean match percentage for 

matching RPTs is clearly more distinct than that of the non-matching RPTs. 

Unfortunately, when comparing the minimum match percentage for matching RPTs 

against the maximum match percentage of non-matching RPTs, we get a much smaller 
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range of 0.46% to 3.28%.  Upon investigation of the matching RPTs with low match 

percentages, we found that these images all had focus problems which reduced the 

number of feature correspondences.   

 

We generated a receiver operator characteristics curve (ROC) by varying match 

percentage required for a verification to pass.  We expect 1005 true positives and 

1192297 true negatives.  The resulting ROC curve is shown in Figure 2.  
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Figure 2:  ROC curve for RPT Verification without Affine Transformation Filtering 

 

As expected from the summary statistics, we obtain perfect performance for all 

thresholds in the range [0.46%, 3.28%].  These results are very promising but do illustrate 

the need for a more rigorous test to account for the possibility of getting low match 

percentages on true matches due to imaging issues.   

Test 2 

In our second test, we investigated the two different types of non-matching RPTs:  

verifications between RPTs that are completely different, and verifications between the 

same RPT with a different lighting orientations.  We broke down the results from Test 1 

for each of these categories.  The results are shown in Table 2. 

 
 Number of 

Examples 

Mean match % Match % STD Min Match % Max Match % 

Same RPT, 

Different Lighting 

3685 0.02% 5.04e-5% 0.011% 0.059% 

Different RPTs 1188612 0.02% 5.21e-5% 0.01% 0.45% 

 Table 2:  Same RPT, Different Lighting vs. Different RPT Matching Results 

 

We performed a T-Test to determine if the two populations where statistically different.  

The result was a p-value of 0.5089 at a significance level of 5%.  This means that the 

populations are statistically indistinguishable.  This means that changing the lighting 
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orientation by 90 degrees produces as much appearance difference as completely 

changing the tag. 

Test 3 

In our final test, we repeated the same procedure as in Test 1 and then tested the resulting 

affine transform using the following criteria: 

 

• x/y translation < 100 pixels 

• scale change of less than 2% 

• rotation of less than 2 degrees  

 

All 1005 matching RPT verifications passed the affine transform test.  We did not have a 

single non-matching RPT verification pass the affine transformation test.  We get perfect 

verification performance with any match percentage greater than 3.28%.  We can not 

produce any false positives even when completely ignoring the match percentage.  There 

remains a small possibility that the geometric matcher will incorrectly produce an affine 

transform that meets our criteria for two RPTs that should fail.  Due to this fact, we can 

not rely on the affine transformation test alone.  These results give us high confidence 

that the combination of our geometric matching technique with the affine transformation 

test produces robust RPT verifications. 

Future Work 
While we are confident our algorithm correctly verifies if two images are of the same 

RPT at the same lighting, it can not determine if there are small areas of the RPT that 

have been changed.  To fix this weakness, we will investigate extending the verification 

algorithm.  First, we plan to investigate aligning the images, via the solved affine 

transform, and subtracting the images.  We will perform statistical analysis of the 

distribution of difference values to automatically detect areas of the image that are likely 

to contain non-random changes.  In addition, we will investigate building templates out 

of this statistical information to help alert the user to the likely causes of detected change.   

The final step will be to combine the verification results for the images at each lighting 

orientation for a given RPT.  By combining the results from across the image set, we will 

obtain even more confidence in the results. 
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