Global HEU Minimization Challenges - Political, technical and economic issues

2nd International Symposium on HEU Minimization
23-25 January 2012
Vienna

Annette Schaper, HSFK
Overview

- Conversion of civilian HEU fueled research reactors (RERTR)
- The case of the research reactor FRM-II
- Naval fuel
Context: HEU minimization projects

Existing
• Conversion of civilian HEU fueled research reactors (RERTR)
• Take back and downblending programs
• Consolidation of storage sites within a country
• Improvement of MPC&A
• “Megatons to Megawatt“

Non-existing
• Phase out of all non-weapons uses of HEU
Conversion of research reactors

Rationale for using HEU in research reactors

Wanted product: high neutron flux

Unwanted by-product: heat

With HEU, parasitic neutron absorption in U-238 is lower, U-235 in the reactor core is denser, ratio of neutrons per heat is higher

For these reasons, many research reactors had been fueled with HEU
HEU exported by the U.S.

Source: U.S. HEU Report 2001
Reduced Enrichment for Research and Test Reactor (RERTR) program

Objective:

Develop different fuels that contain LEU instead of HEU and that at the same time avoid significant disadvantages in experiment performance, economic, or safety aspects of the reactor.

Initiated by the U.S. In 1978

Significant contributions by Germany
Conversion success?

Should the development be successful, it will be possible to convert the remaining research reactors. The expectation is that all research reactors will be either converted or will reach the end of their life times. New reactors are expected to be designed and constructed for LEU fuels. This way, the civilian use, trade, and international transfers of HEU could be entirely phased out.
RERTR: Conversion of many U.S. and European Reactors, but not all

Previously: Uranium oxide in an aluminium matrix (UAlₓ/U₃O₈),
 density about 1.5 g/cm³

Replaced by Uranium silicide (U₃Si₂), density of 4 – 8 g/cm³

No loss of performance, exceptions: Some modern high flux reactors

Under development: Fuels of even higher density, based on U-molybdenum
 alloys dispersed in an aluminium matrix, density of 8 – 9 g/cm³

Under development: U-Molybdenum alloys as metals, density up to 16
 g/cm³

Time of availability not yet clear.
No new HEU research reactors for a long period

Instead, 17 new research reactor fueled with LEU

Exception: FRM-II in Garching near Munich

- design and planning started shortly after INFCE
- publicly debated since about 1993
- constructed since 1996
- operated since 2003

FRM-II uses the new silicide fuels (development pushed by RERTR), but with HEU

⇒ Higher flux than with traditional LEU dioxide fuel, or with LEU silicide fuel
Comparison of different fuels

Source: A. Glaser 2005

Uranium density in g/cm^3

- U-238 fraction
- U-235 fraction

Under development

16 g/cm^3
8.0 g/cm^3
4-8 g/cm^3
1.5 g/cm^3
3.0 g/cm^3

HEU
LEU
FRM-II
UAI_x/U_3 O_2
U_3 Si_2
U_2 Si_2
UMO
Monolithic
LEU
LEU
Technical reasoning for the choice of FRM-II fuel

For the same high neutron flux but LEU silicide fuel, a somewhat larger reactor core would have been needed.

This would have produced some more energy.

But with a particularly low energy output, particularly cold neutrons can be produced.

This reduces measuring time in experiments to a certain extent.

With a somewhat larger reactor core, experiments would have taken somewhat longer.
Political decision

What is more important?

Best neutron flux per energy?
or compliance with HEU minimization goal?

Licenses deal with

- nuclear activation,
- environmental dangers,
- accident risks,
- radiation protection,
- and disposal,

but do not mention nonproliferation or international relations.
Discussions on FRM-II

Heavy criticism domestically and internationally:

- The breach of the moratorium would set a precedent,
- imitators would follow,
- the efforts and successes of RERTR would be undermined,
- international trade would resume,
- the phase out of the civilian use of HEU would become impossible

Justifications by the proponents:

- Sooner or later, a first project would use every new fuel with HEU instead of LEU anyway.
- At that time (until 1995), the U.S. planned to build a new research reactor, the Advanced Neutron Source (ANS)
- At that time, the U.S. Department of Energy had been slow to convert U.S. Reactors
- At that time, there was a perceived double standard
The public debate (1)

• During the initial evaluation, there was no perceptible public debate.
• Nonproliferation was not taken seriously.
• Negative foreign policy aspects were downplayed.
• The decision making was not transparent and hardly made public.
• The debate on HEU started to late.
• The debate was uneducated on both sides
The uneducated public debate (2)

- Opponents focused on environmental aspects, only later used HEU argument, but many viewed it just as tool to stop the project altogether.
- Proponents denounced HEU opponents of being antinuclear.
- Proponents, including the government, justified the HEU use by *environmental* aspects!

“The Federal Government has on numerous occasions explained that the use of HEU in the FRM-II project is highly recommended because of the specific scientific objectives involved, on grounds of cost, and in particular because of the comparatively limited effects on the environment and the smaller plutonium yield.” (in Bundestag, 1993)

“Conversion of research reactors from high to low enrichment only shifts the risks. With low enrichment, substantially more plutonium will be bred during reactor operation than with high enrichment.” (Bavarian Government, 1990)
The concept of proliferation resistance

Developed by INPRO (International Project on Innovative Nuclear Reactors and Fuel Cycles) and GIF (The Generation IV International Forum)

Some examples of requirements:

- States' commitments, obligations and policies regarding non-proliferation and its implementation should be adequate to fulfil international standards in the non-proliferation regime.
- The attractiveness of nuclear material and nuclear technology for a nuclear weapons program should be low.
- PR should be taken into account as early as possible.

Had a proliferation resistance evaluation taken place during the decision making phase, the discussion would have been more educated.
Benefits of conversion of naval reactors

- Would allow a realistic prospect for phasing out all HEU
- Would facilitate the verification of an FM(C)T
- Would close a loophole in NPT verification
- Would reduce proliferation risks

In 1995, the U.S. Navy rejected the idea of conversion, but in its reasoning ignored the RERTR efforts of developing denser fuels.
Comparison of research and naval reactors with respect to conversion

<table>
<thead>
<tr>
<th>Property</th>
<th>Research reactors</th>
<th>Naval reactors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power density</td>
<td>high, comparable</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>comparable</td>
<td></td>
</tr>
<tr>
<td>Size of reactor core</td>
<td>small</td>
<td></td>
</tr>
<tr>
<td>Product wanted</td>
<td>neutrons</td>
<td>power</td>
</tr>
<tr>
<td>Refueling frequency</td>
<td>higher</td>
<td>low</td>
</tr>
<tr>
<td>Burn-up</td>
<td>less</td>
<td>very high</td>
</tr>
<tr>
<td>Variety of designs</td>
<td>many</td>
<td>few</td>
</tr>
<tr>
<td>Scientific community engaged</td>
<td>large</td>
<td>small</td>
</tr>
<tr>
<td>Transparency</td>
<td>high</td>
<td>non-existent</td>
</tr>
<tr>
<td>Cladding and stabilizing fuel elements</td>
<td>being researched</td>
<td>unknown</td>
</tr>
<tr>
<td>Chemical composition of uranium fuel</td>
<td>several</td>
<td>oxide</td>
</tr>
<tr>
<td>RERTR efforts used</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>
Conversion of naval reactors?

1995 study of U.S. Navy:

• Conversion would need larger core
• Or would reduce lifetime because of less U-235

but
• Technology of current cores is from the later 1970ies
• No other fuel was available than oxide
• Navy study does not consider any other fuel
• “Materials delivered are either UF6, oxides, or metal“