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Executive Summary

Rapid scientific and technological advances are fueling a 21st-century 
biotechnology revolution. Accelerating developments in the life sciences and 
in technologies such as artificial intelligence (AI), automation, and robotics are 
enhancing scientists’ abilities to engineer living systems for a broad range of 
purposes. These groundbreaking advances are critical to building a more productive, 
sustainable, and healthy future for humans, animals, and the environment.

Significant advances in AI in recent years offer tremendous benefits for modern 
bioscience and bioengineering by supporting the rapid development of vaccines 
and therapeutics, enabling the development of new materials, fostering economic 
development, and helping fight climate change. However, AI-bio capabilities—AI 
tools and technologies that enable the engineering of living systems—also could be 
accidentally or deliberately misused to cause significant harm, with the potential to 
cause a global biological catastrophe.

These tools could expand access to knowledge 
and capabilities for producing well-known toxins, 
pathogens, or other biological agents. Soon, some 
AI-bio capabilities also could be exploited by 
malicious actors to develop agents that are new or 
more harmful than those that may evolve naturally. 
Given the rapid development and proliferation 
of these capabilities, leaders in government, 
bioscience research, industry, and the biosecurity 
community must work quickly to anticipate 
emerging risks on the horizon and proactively 
address them by developing strategies to protect 
against misuse.

To address the pressing need to govern AI-
bio capabilities, this report explores three key 
questions:

 z What are current and anticipated AI capabilities 
for engineering living systems?

 z What are the biosecurity implications of these 
developments?

 z What are the most promising options for 
governing this important technology that will 
effectively guard against misuse while enabling 
beneficial applications?

To answer these questions, this report  
presents key findings informed by interviews 
with more than 30 individuals with expertise in AI, 
biosecurity, bioscience research, biotechnology, 
and governance of emerging technologies. 
Building on these findings, the report includes 
recommendations from the authors on the path 
toward developing more robust governance 
approaches for AI-bio capabilities to reduce 
biological risks without unduly hindering  
scientific advances.
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Current and Anticipated  
Capabilities
The intersection of AI with biology includes 
a wide variety of tools developed for many 
purposes, including large language models (LLMs), 
biodesign tools, and AI-enabled automation of 
the life sciences (for definitions, see box 1 in the 
main text). These AI-bio capabilities are likely 
to accelerate advances in the life sciences in a 
wide range of ways, from facilitating scientific 
training to helping scientists design new biological 
systems. Rapid progress in AI models is already 
lowering barriers to engineering biology, but 
tremendous uncertainty remains about the future 
capabilities of these tools, the pace of their 
development, and when breakthroughs will occur.

LLMs trained on human, or “natural” language, 
and their applications—such as OpenAI’s ChatGPT, 
Meta’s LLaMA Chat, Anthropic’s Claude, and 
Google’s Bard—are receiving significant attention 
for their ability to synthesize information and 
generate novel text in response to user prompts. 
LLMs can also process other types of data, such 
as audio, visual, and biological data, and efforts to 
create models that incorporate multiple types of 
data are underway. Although most natural language 
LLMs are not specifically designed to improve 
understanding of biological systems, they de facto 
serve this function by effectively summarizing a 
wide range of publicly available information about 
the life sciences, bioengineering, and laboratory 
tools and methods. These tools are designed to be 
easy to use and are likely to facilitate some types of 

bioengineering by providing information, promising 
approaches, training, and guidance, including 
to users who have little scientific expertise. 
However, because LLMs draw on information 
that is widely available, they are likely to be most 
helpful and accurate for methods that have been 
well described and are similar to those that have 
been used previously. Additionally, LLMs may 
“hallucinate” false information in a convincing way, 
making it difficult for those with little expertise on 
a topic to tell fact from fiction.

Biodesign tools are trained on biological data, such 
as DNA or protein sequences, and are generally 
used by specialists to design biological molecules 
or systems. Protein design tools are the most 
mature biodesign tools, but other types are under 
development, including those that could be used 
to design more complex biological systems, such 
as whole genomes or organisms. Key limiting 
factors to developing these models include the 
complexity of biological systems and the paucity 
of information linking biological sequences with 
biological functions. In the near term, using 
these models will likely require some scientific 
expertise, and any designs generated will require 
experimental validation.

AI-enabled automated science is the delegation of 
one or more steps in the scientific process to AI. 
This could include surveying academic literature on 
a topic, developing testable hypotheses, designing 

AI-bio capabilities are likely to accelerate advances in the life sciences 
in a wide range of ways, from facilitating scientific training to helping 
scientists design new biological systems.
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and carrying out experiments using laboratory 
robotics, analyzing results, and forming updated 
hypotheses. These capabilities have the potential 
to speed up the scientific process in a number 
of ways, including by scaling up and outsourcing 
work, reducing the number of experiments 
that need to be performed, and removing time 
constraints and errors inherent in human labor. 
Although some chemistry research has been 
completely automated in this way, automation of 
work involving living systems has proven more 
challenging, and only parts of the process can 
currently be automated. It is unclear if or when 
more AI advances will make it possible to fully 
automate systems to support life science research.

Biosecurity Implications
The level of risk that AI-bio capabilities may pose 
for biosecurity, and which tools pose the greatest 
risk, are the subject of some disagreement within 
the life sciences and AI expert communities. 
However, experts broadly agree that while 
offering benefits, these capabilities will enable a 
wide range of users to engineer biology and are 
therefore also likely to pose some biosecurity 
risks. Without appropriate safeguards, a malicious 
actor with little expertise in biology could use LLMs 
to become familiar with pathogens that could be 
used to cause catastrophic harm. LLMs also could 
provide access to publicly available information 
on how to obtain such agents and locate relevant 
equipment, facilities, and opportunities for 
outsourcing. However, significant barriers would 
remain, including funding, infrastructure, access 
to materials, and tacit knowledge of how to 
successfully work in a laboratory. Furthermore, 
current LLMs are unlikely to generate toxin or 
pathogen designs that are not already described in 
the public literature, and it is likely they will only be 
able to do this in the future by incorporating more 
specialized AI biodesign tools.

AI biodesign tools, in contrast, may be able to 
generate toxin or pathogen designs that are not 
found in nature. Some of these could be more 
harmful than versions that may evolve naturally. 
Using these types of tools currently requires some 
expertise, but they will likely become easier to use 
in the near future. Significant uncertainty remains 
about if or when AI biodesign tools might be able 
to generate reliable designs for biological agents 
that are as complex as pathogens, and there are 
major barriers to converting a digital design into 
biological reality, including generating, testing, 
and deploying these agents.

Notwithstanding the risks, AI-bio capabilities will 
also benefit society and bolster biosecurity and 
pandemic preparedness. In addition to broadly 
enabling scientific progress, AI models are 
already aiding pathogen biosurveillance systems, 
the development of medical countermeasures, 
and other aspects of pandemic preparedness 
and response. In the future, AI could improve 
biosecurity and pandemic preparedness in a wider 
variety of ways, including by predicting supply-
chain shortages during public health emergencies 
and detecting unusual or potentially dangerous 
behaviors among AI model users or life science 
practitioners.

Opportunities for Risk Reduction
Reducing biosecurity risks associated with AI-
bio capabilities without unduly hindering their 
beneficial uses is paramount, and a number of 
approaches are possible. A successful, layered 
defense will include several key components: 
establishing guardrails for AI-bio capabilities, 
strengthening controls at the interface where 
digital designs become physical biological 
systems, and bolstering pandemic preparedness. 
This report focuses primarily on building stronger 
guardrails for AI-bio capabilities because this area 
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requires the development of novel solutions and 
represents a significant and urgent challenge.

Many developers of natural language LLMs 
already are implementing methods to safeguard 
their models against misuse. Current technical 
safeguards include training AI models to refuse 
to engage on particular topics and employing 
other methods to prevent them from outputting 
potentially harmful information. To assess the 
robustness of these methods, it is essential to 
evaluate models, for example with “red-teaming” 
exercises to determine their potential for misuse. 
The success of these technical safeguards also 
requires that AI model developers control access to 
their models. This can be challenging, particularly 
because some smaller AI models, including many 
AI biodesign tools, are developed as open-source 
resources. Other potential guardrails for AI models 
include controlling access to the computational 
infrastructure needed to train powerful models 
or to potentially harmful data, but there are 
open questions about the effectiveness of these 
approaches that will be important to resolve. To 
further develop guardrails, AI model developers 
will need to work collaboratively with biosecurity 
experts to understand the biosecurity risks posed 
by their models, develop best practices, and refine 
and update approaches.

In addition to developing AI model guardrails, there 
are opportunities to improve biosecurity oversight 

at the interface where digital biological designs 
become physical reality. For example, many 
providers of synthetic DNA conduct biosecurity 
screening to ensure that pathogen or toxin DNA 
is not sold to customers who lack a legitimate 
use for it. These practices are currently largely 
voluntary, but governments could put in place 
more effective incentives or legal requirements. 
Improved screening tools would allow these 
providers to keep pace with the increasing number 
of novel designs generated by AI biodesign tools 
by screening DNA sequences on the basis of their 
potential encoded functions rather than just their 
similarity to known sequences. Other types of 
life science vendors and organizations also could 
bolster biosecurity by screening for customer 
legitimacy. These vendors and organizations 
include contract research organizations, academic 
core facilities, and providers of cloud laboratory 
services, robotics, and other life sciences products 
and services.

While more effective guardrails can offer 
significant risk reduction benefits, it is unlikely 
that they will eliminate all biosecurity risks 
that may arise at the intersection of AI and the 
life sciences. Therefore, resilient public health 
systems and strong pandemic preparedness and 
response capabilities will remain key safeguards; 
these capabilities can be substantially improved 
through AI-enabled advances.

AI model developers will need to work collaboratively with biosecurity 
experts to understand the biosecurity risks posed by their models, develop 
best practices, and refine and update approaches.
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Recommendations

Establish an international “AI-Bio Forum” 
to develop AI model guardrails that reduce 
biological risks

The Forum should be composed of key 
stakeholders and experts, including AI model 
developers in industry and academia and 
biosecurity experts within government and civil 
society. It should serve as a venue for developing 
and sharing best practices for implementing 
effective AI-bio guardrails, identifying emerging 
biological risks associated with ongoing AI 
advances, and developing shared resources to 
manage these risks. It should inform efforts by 
AI model developers in industry and academia, 
governments, and the broader biosecurity 
community, and it should establish global 
norms for biosecurity best practices in these 
communities.

Develop a radically new, more agile 
approach to national governance of  
AI-bio capabilities

To address emerging risks associated with 
rapidly advancing AI-bio capabilities, which can 
be difficult to anticipate, national governments 
should establish agile and adaptive governance 
approaches that can monitor AI technology 
developments and associated biological risks, 
incorporate private sector input, and rapidly adjust 
policy. Government policymakers should explore 
innovative approaches, such as dramatically 
streamlining rule-making procedures; rapidly 
exchanging information or co-developing policy 
with non-governmental AI experts; or explicitly 
empowering agile, non-governmental bodies that 
are working to develop and implement AI guardrails 
and other biological risk reduction measures.

Implement promising AI model guardrails  
at scale

AI model developers should implement the most 
promising already developed guardrails that 
reduce biological risks without unduly limiting 
beneficial uses. They should collaborate with other 
entities, including the AI-Bio Forum described 
above, to establish best practices and develop 
resources to support broader implementation. 
Governments, biosecurity organizations, and 
others should explore opportunities to scale up 
these solutions nationally and internationally, 
through funding, regulations, and other incentives 
for adoption. Existing guardrails that should be 
broadly implemented include AI model evaluations, 
methods for users to proactively report hazards, 
technical safeguards to limit harmful outputs, and 
access controls for AI models.

Pursue an ambitious research agenda to 
explore additional AI guardrail options for 
which open questions remain

AI model developers should work with biosecurity 
experts in government and civil society to 
explore additional options for AI model guardrails 
on an ongoing basis, experimenting with new 
approaches, and working to address key open 
questions and potential barriers to implementation. 
Priority areas for exploration include controlling 
access to AI biodesign tools, managing access to 
computational resources needed to train models, 
and managing access to data.
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Strengthen biosecurity controls at the 
interface between digital design tools and 
physical biological systems

 z Tool developers in industry, academia, and non-
governmental organizations should develop new 
AI tools to strengthen DNA sequence screening 
approaches to capture novel threats and 
improve the robustness of current approaches.

 z Governments, international bodies, and other 
key players should work to strengthen DNA 
synthesis screening frameworks, including by 
legally requiring screening practices.

 z Governments and others should expand 
available tools, requirements, and incentives for 
customer screening to a wide range of providers 
of life science products, infrastructure, and 
services.

Use AI tools to build next-generation 
pandemic preparedness and response 
capabilities

Governments, development banks, and other 
funders should dramatically increase investment 
in pandemic preparedness and response, including 
by supporting development of next-generation AI 
tools for early detection and rapid response.

The convergence of AI and the life sciences marks 
a new era for biosecurity and offers tremendous 
potential benefits, including for pandemic 
preparedness and response. Yet, these rapidly 
developing capabilities also shift the biological 
risk landscape in ways that are difficult to predict 
and have the potential to cause a global biological 
catastrophe. The recommendations in this report 
provide a proposed path forward for taking 
action to address biological risks associated with 
rapid advances in AI-bio capabilities. Effectively 
implementing them will require creativity, agility, 
and sustained cycles of experimentation, learning, 
and refinement.

The world faces significant uncertainty about 
the future of AI and the life sciences, but it is 
clear that addressing these risks requires urgent 
action, unprecedented collaboration, a layered 
defense, and international engagement. Taking 
a proactive approach will help policymakers and 
others anticipate future technological advances 
on the horizon, address risks before they fully 
materialize, and ultimately foster a safer and more 
secure future.



The Convergence of Artificial Intelligence and the Life Sciences

Introduction

Modern bioscience and biotechnology are critical to building a more 
productive, sustainable, and healthy future for people, animals, and the 
environment. Rapid advances in these fields will have transformative 
effects on manufacturing, agriculture, energy production, and medicine. 
Recent progress in artificial intelligence (AI) technologies is steadily 
converging with the life sciences, building on decades of research 
and data collection, and will further accelerate these developments. 
The convergence of AI with biology will undoubtedly offer significant 
benefits, but it also poses new and poorly understood risks. This report 
describes this intersection, including AI tools and capabilities that enable 
engineering of living systems, the biosecurity implications of these 
developments, and opportunities to reduce risks.

www.nti.org 9
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While AI-bio capabilities can offer important 
benefits, biosecurity experts warn that they 
could also cause harm through accidental or 
intentional misuse. Malicious actors could exploit 
these tools to develop novel or more harmful 
toxins, increasingly dangerous pathogens, or 
other engineered biological agents. Given the 
rapid development and proliferation of AI-bio 
capabilities, it is critical to quickly identify 
potential risks and begin to implement strategies 
to protect against their misuse.

AI is intersecting with biology in a wide variety 
of contexts, with tools developed for a broad 
range of purposes (see box 1). LLMs developed 
by OpenAI, Meta, and Google, are not specifically 

designed to improve our understanding of 
biological systems, but they have important 
intersections with the biosciences. AI biodesign 
tools are trained on biological data, such as DNA 
and protein sequences, and are often used by 
specialists working to design biological systems. 
Scientists use these tools for a wide range of 
practical purposes, such as for designing vaccines 
and understanding the mechanisms of disease 
transmission.1 Automated science is incorporating 
AI into many steps in the scientific process, from 
the generation of hypotheses to the improvement 
of robotic experimentation, to data analytics.2 
These growing capabilities have the potential 
to enable the testing of more hypotheses and 
accelerate the pace of scientific discovery.

This report uses multiple terms to describe AI tools that intersect with the life sciences.

AI-bio capabilities refers to the full range AI tools, models, and technologies that contribute to 
advances in the life sciences and bioengineering.

In this report, LLM refers to large language models trained on natural language (i.e., human 
language) as well as the associated applications built on top of them, such as chatbots that 
respond to text-based queries. LLMs can also be used to model other types of data, such as 
images, audio, and biological sequences, but unless otherwise specified, this report focuses on 
natural language LLMs. Other reports or analyses may refer to these models as “foundation” 
models if they are trained on large amounts of data and can be repurposed for more specific 
tasks, or as “frontier” models if they are close to the leading edge of AI capabilities.

Biodesign tool refers to any AI model that is used to design biological parts, systems, or 
organisms according to desired characteristics defined by the user. Some AI biodesign tools 
are LLMs that are trained on biological sequences rather than on natural languages, and this 
report considers them as biodesign tools. Some analysis of biodesign tools also draws on AI 
models, such as AlphaFold2, that are trained on biological data and provide insight into biology 
but do not provide biological designs.

Automated science refers to a range of AI tools and capabilities that can automate one or more 
steps in the scientific discovery process.

BOX 1. AI-BIO CAPABILITIES
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Each of these types of tools change the risk 
landscape in unique ways. For example, LLMs 
may be helpful to users with less scientific 
expertise who seek to learn more about pathogens, 
pathogen engineering, or laboratory techniques. 
Effectively using AI biodesign tools requires 
more expertise but could generate a wide variety 
of designs for toxins or, further into the future, 
pathogens or other biological agents with desired 
characteristics. AI automation may enable larger-
scale testing of biological designs, allowing 
better optimization of desired characteristics. It 
is likely that different types of AI-bio capabilities 
will increasingly be combined in the future. 
For example, future AI tools could use LLMs to 
interpret a user’s text-based prompts, and use a 
biodesign tool to generate a design that satisfies 
the user’s request,3 and AI-enabled automated 
science systems could help experimentally 
evaluate AI-generated biological designs.

Experts remain uncertain about how LLMs, 
AI biodesign tools, and AI-bio capabilities for 
automating science will change in the near future, 
when developments or breakthroughs will occur, 
and how new biosecurity risks will materialize. 
This report aims to provide as much clarity as 
possible about anticipated risks and opportunities 
posed by AI and to provide recommendations 
on the path forward. It is imperative that AI 
model developers, policymakers, and biosecurity 
experts acknowledge and plan for unanticipated 
capabilities and risks that will emerge as AI 
continues to intersect with biology in new ways.

Context and Methodology
The Nuclear Threat Initiative (NTI) is a nonprofit, 
nonpartisan global security organization focused 
on reducing nuclear and biological threats 
imperiling humanity. Within NTI, the Global 
Biological Policy and Programs team (NTI | bio) 
works with governments, industry, academia, 
international organizations, and civil society to 
prevent catastrophic biological events, including 
through its work to strengthen biotechnology 
governance. NTI | bio is advancing this work 
through the Biosecurity Innovation and Risk 
Reduction Initiative,4 which focuses on addressing 
emerging biological risks associated with rapid 
technological advances. Under this initiative, 
NTI | bio has worked to bolster safeguards for 
DNA synthesis technologies5 and to strengthen 
biosecurity governance worldwide, specifically 
through the establishment of the International 
Biosecurity and Biosafety Initiative for Science.6

This report stems from the recognition that 
developing effective guardrails will be a critical 
element of broader efforts to safeguard the tools 
of modern bioscience and biotechnology against 
accidental or deliberate misuse. It draws on 
structured interviews with more than 30 experts 
in AI, biosecurity, bioscience research, synthetic 
biology and biotechnology, and governance 
of emerging technologies. The authors also 
convened a virtual workshop in August 2023 with 
interviewees and additional experts to discuss 
preliminary findings and recommendations that 
emerged from the interview process (for the list 
of participants, see appendix A). The first three 
sections of this report draw heavily on the expert 
opinions and perspectives that were gathered 
over the course of this project, though no attempt 
was made to generate consensus among this 
group. The final section of the report includes 
recommendations that build on the key findings 
but were developed by the authors alone and do 
not necessarily reflect the views of these experts.
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AI and Biology: Current and  
Anticipated Capabilities

To better understand AI-bio capabilities and their implications for the life 
sciences in the near future, we addressed the following key questions:

What types of capabilities do the key relevant technologies currently have, 
and what are their main limitations? How will these capabilities evolve over the 
next few years?

What important unsolved problems in the life sciences and engineering living 
systems might AI and/or machine learning tools solve in the next two to five 
years?

What existing problems might AI or machine learning tools solve faster or with 
less expertise required from the user? Will AI or machine learning tools lower 
the barriers to entry for engineering living systems? If so, how?

12 www.nti.org
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The application of AI to bioscience and 
biotechnology is not a recent development. 
Initial AI tools were limited by the amount of 
data available to train them;7 however, a recent 
explosion of data has catalyzed rapid progress, 
driving major advances. A wide range of data—
including text-based data, protein structures, DNA 
sequences, and other experimental results—has 
contributed to our understanding of biology and 
has provided fertile ground for the emergence of 
new AI-bio capabilities.

Recently, AI-bio capabilities have transitioned 
from the prediction of outcomes to the active 
generation of content, which marks a significant 
inflection point and changes the broader 
landscape of AI’s impact on bioscience and 
biotechnology. In this report, we discuss three 
types of AI-bio capabilities: LLMs, biodesign tools, 
and automated science (see box 1).

Conversational LLM applications, such as 
ChatGPT, have captured the public imagination by 

generating text responses to user prompts.8 For 
the life sciences, these models will enable people 
to conduct basic research, engineer biology, or 
simply satisfy curiosity by bringing together 
and synthesizing large amounts of information. 
Models specific to biological applications have also 
advanced rapidly,9 and many other breakthroughs 
are on the horizon. These AI biodesign tools 
will enable scientists to design new proteins 
and other features of biological systems much 
more rapidly for a wide range of applications in 
medicine, fuels, foods, materials, and other fields. 
A variety of AI tools and capabilities are coming 
together to improve the automation of science—
from literature searches and AI-driven robotic 
experimentation to interpretation of results—
increasing the pace of scientific advancement. 
In addition to significant benefits for the life 
sciences more broadly, all three of these types 
of AI-bio capabilities will contribute in important 
ways to public health and pandemic preparedness 
and response.

Term Definition

AI agent A computer program consisting of multiple independent programs, 
some of which use AI, designed to work together to carry out more 
complex tasks than prediction or design. 

Application 
programming 
interface (API)

A set of protocols and tools that allow different software applications to 
interact with each other and share data in a standardized way, enabling 
developers to create new applications without having to start from 
scratch.

Artificial 
intelligence 
(AI)

A computer system designed to simulate human intelligence by 
performing tasks that typically require human cognition, such as 
learning, problem-solving, decision-making, and language processing.

BOX 2. KEY TERMS USED IN THIS REPORT

continued on next page >
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Term Definition

Digital-
physical 
interface

The point at which digital biological designs begin to be constructed into 
physical biology. Biological designs will first be constructed in software, 
after which physical molecules will need to be assembled to make the 
design into a biological system. The clearest example of the digital-
physical interface is DNA synthesis.

Foundation 
model

A large-scale machine learning model that is trained on vast amounts 
of data to perform a wide range of tasks, such as natural language 
processing and image recognition. These general-purpose models 
provide a basis for further machine learning research and can be fine-
tuned for specific applications.

Frontier model A foundation model that is close to, or exceeds, the capabilities 
currently present in the most advanced models but differs with respect 
to its scale, design, or capabilities.

Generative 
model

A model that can generate new content rather than produce predictions 
or evaluations of existing content. 

Machine 
learning

A wide range of approaches that focus on developing algorithms and 
statistical models that enable computer systems to learn from data and 
make decisions that are based on data. 

Open source A model of software development in which the source code is made 
freely available to the public, allowing anyone to view, use, modify, and 
distribute it. The open-source movement emphasizes collaboration and 
community-driven development, with the goal of creating high-quality 
software that benefits everyone.

Prompts Requests delivered to an AI model by a user to elicit a response. The 
quality of the prompt can have a large impact on the quality of the 
response. 

Pre-training The process of training a model on large data sets of general 
information with a loosely defined goal to capture structure, patterns, 
and relationships in the data. This process can give the model broad 
capabilities and the potential to perform better on tasks with less 
available data through the process of fine-tuning.

Fine-tuning The process of training pre-trained models on a smaller amount of 
information specific to the task or topic at hand. This approach tends to 
produce better results than simply training a model on a small data set.

Dynamic vs. 
static models

A static model is trained once on a defined set of data. A dynamic model 
continually updates by training on new information. 

Box 2. Key Terms Used in this Report (continued)
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Large Language Models
Natural language LLMs are a type of AI model that 
is trained on vast amounts of text data to generate 
human-like language. They are capable of tasks 
such as translating language, summarizing text, 
and answering questions, and have been used in 
a variety of applications such as chatbots, voice 
assistants, and language modeling. LLMs are used 
by a wide range of people for broad purposes, and 
their capabilities have expanded unexpectedly 
rapidly. In 2017, AI experts predicted that LLMs 
would reach language proficiency on par with 
humans by 2050.10 More recent estimates have 
predicted that these capabilities could emerge 
as early as 2024. Multiple experts, pointing to 
the October 2023 release of the GH200 NVIDIA 
computer chips,11 have identified early 2024 as a 
milestone date when these more powerful chips 
could yield a significant jump in LLM capabilities.

Natural language LLMs are the focus of this 
report (see box 1), but LLMs can be trained on 
a wide range of data, such as audio, visual, and 
biological data. “Multimodal” models that process 
many types of data are under development and 
will expand LLM capabilities. Given the general 
capabilities of these models, they are often 
referred to as an example of “foundation models” 
since they can be further trained—or fine-tuned—
to improve their performance on a variety of 
more specific tasks. Alternatively, when they are 
trained on a particularly large amount of data and 
computational resources, they may be referred to 
as “frontier models,” which represent the state of 
the art for LLMs. (See box 2.) Frontier models are 
currently produced primarily by companies in the 
United States and the United Kingdom, with some 
development in China. There is extensive interest 
in LLMs in many other countries around the world, 
where many types of LLMs are being developed 
(for examples, see appendix B).12

Although natural language LLMs are not designed 
specifically to facilitate advances in the life 
sciences, they will change the landscape of how 
life science research is conducted by supporting 

education and training, basic research, and 
laboratory capabilities. A major advantage of LLMs 
and their applications such as ChatGPT, Claude, 
and Bard is their ability to quickly bring together 
information from many sources and communicate 
it in accessible language. Several experts believe 
that these models can help people who are not 
knowledgeable about a topic rapidly form an 
understanding that is on par with that of an 
undergraduate or even a doctoral student. Current 
models appear to be most useful to users with 
less expertise in a topic, but it is not clear whether 
this trend will hold.13 Some academics noted that 
their students often use these tools for help with 
studying and completing assignments, but the 
experts themselves found these tools lacking in 
precision or accuracy when prompted with more 
technically sophisticated questions, and they 
believe that current LLMs are unlikely to provide 
significant novel insights into biological systems. 
Some LLMs are trained specifically on text from 
scientific literature,14 and experts believe that 
they may be more helpful for students and others 
seeking to get up to speed on technical topics.

Many experts pointed to the ability of LLMs to 
help design and troubleshoot molecular biology 
experiments on the basis of published information 
and to program robotics platforms to carry out 
experiments. These capabilities can reduce the 
need for people to develop the technical skills 
required to perform the experiments themselves. 
Current LLMs are generally limited to text-based 
information, but some can incorporate information 
from images and videos; this may enable them to 
more effectively provide feedback and suggestions 
for troubleshooting laboratory techniques in real 
time.15 

Notwithstanding these capabilities, there are limits 
to the amount of tacit knowledge about laboratory 
work that LLMs could offer. Some experts doubted 
that the information provided by an LLM would 
be substantially more enabling than the results 
of searching for the same information by using 



16 www.nti.org

The Convergence of Artificial Intelligence and the Life Sciences

a standard online search engine or watching a 
video of the work being carried out. In addition, the 
engineering biology capabilities that LLMs provide 
are likely to be limited to information and tasks 
that are well specified and publicly described, 
and users would still require some fundamental 
understanding of science and practical laboratory 
skills to verify that their experiments have yielded 
the desired results.

Another limitation of LLMs is that they may 
“hallucinate,” producing incorrect information 
that they convincingly present as true. Novices 
may find it challenging to identify these false 
statements and could easily be misled. This 
drawback is widely acknowledged, and some, 
though not all, AI experts are optimistic that LLM 
developers will significantly reduce this problem 
over the next five years. A further limitation of 
LLMs is their rudimentary reasoning abilities, 
which are prone to fail often, especially when 
performing tasks that require several sequential 
steps or logical leaps.16 These capabilities are 
likely to improve over time, and developers are 
working specifically to enhance the reasoning 
abilities of these models, for example, with chain-
of-thought prompting.17

Biodesign Tools
AI biodesign tools are mostly used by specialists 
working to design biological systems, and as 
such are trained on biological data, such as DNA 
or protein sequences. They typically require 
more skill and expertise to operate than general-
purpose LLMs. Compared with methods that do not 
use AI, these tools can increase the likelihood of 
producing successful designs, allowing scientists 

to achieve their goals more quickly and with fewer 
resources and experiments.

Advances in LLMs have contributed to advances 
in AI biodesign tools. Early in the history of 
computational biology, researchers recognized 
that DNA and protein sequences resembled 
human language in their sequential nature and 
in the overarching “grammar” that determines 
their structure and function. Some advances in 
AI biodesign tools are therefore supported by 
advances in LLMs, but achieving more significant 
advances in biodesign tools faces additional 
challenges owing to limitations in the volume of 
data available to train the tools.

AI-Enabled Protein Design Tools

Among the available AI-enabled tools for biological 
design, the capabilities of protein design tools have 
advanced most rapidly over the last few years. In 
2020, AlphaFold 2, an AI-enabled protein structure 
prediction tool developed by Google DeepMind, 
garnered significant attention from scientists and 
the general public when it accurately predicted 
the three-dimensional structure of approximately 
90 percent of the protein sequences it was tested 
on, a vast improvement over previous methods.18 
AlphaFold 2 is just one tool among many developed 
in recent years for protein structure prediction and 
protein design (for a list of biodesign tools, see 
appendix B). Many existing AI tools that are trained 
on biological data, like AlphaFold2, do not generate 
biological designs, but have provided valuable data 
for training and refining biodesign tools.

Scientists can use protein design tools for a range 
of beneficial applications, including antibody 
and vaccine design and novel therapeutics, as 

Among the available AI-enabled tools for biological design, the capabilities 
of protein design tools have advanced most rapidly over the last few years.
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well as foods, materials, and improved enzymes 
for biomanufacturing and other applications. 
Scientists currently use AI protein design tools 
such as RFDiffusion19 and ProteinMPNN20 to 
generate new protein sequences with desired 
characteristics related to structure, ability to bind 
to another molecule, and stability. The landscape 
of possible protein sequences is vast, and AI 

can generate and refine promising candidates. 
(For more details, see box 3.) These AI protein 
design tools are typically open source and may 
be available through platforms such as Google 
Collaboratory or Hugging Face so individuals 
can use them without installing any software or 
acquiring their own computing infrastructure.

AI has tremendously affected the field of protein design in the past few years.21 The 
protein design process often involves combining multiple design tools to optimize multiple 
characteristics, such as protein structure, binding characteristics, and solubility. Candidate 
designs are tested in the laboratory to confirm whether they have the predicted properties 
and often require further optimization through experimentation. Before the introduction of AI, 
directed evolution was the primary approach used to design proteins.22 This approach begins 
with choosing a natural sequence close to the desired design, subsequently mutating it to 
generate many variants, then selecting those with better properties, and repeating this process 
until finding a satisfactory result. This approach tests only a small subset of possible variants 
of the original sequence and thus likely leads to a suboptimal solution.

Generative AI tools can improve protein design in two ways. First, they can generate entirely 
new sequences that have desired properties, potentially providing a more promising starting 
point than directed evolution. Second, AI can help select the best variants for experimental 
testing to understand how sequence affects the properties of interest and thus improve them. 
Experts familiar with current AI protein design tools reported success rates of 20 to 50 percent 
for their most successful design tasks. The applications with the highest success rates are 
likely to be those that require high precision and specificity, but are not intended to affect 
complex biological systems, such as cells, more broadly.

Although AI prediction of protein structure is relatively mature, there are classes of proteins 
for which little data exist as a consequence of their fundamental characteristics—for example, 
being disordered or hard to crystallize, or existing in complexes—and for which existing 
methods fail. Two types of proteins that pose particular challenges are peptides (i.e., short 
protein sequences, often comprising about 20 amino acids or fewer), proteins that incorporate 
non-natural amino acids. Many models struggle to design longer sequences, including 
sequence lengths that are common for natural proteins. For example, 200 amino acids is the 
limit for xTrimo-PGLM,23 a leading AI protein design tool, whereas many naturally occurring 
proteins contain more than 300. Proteins that form complexes with DNA, RNA, or small 
molecules have also proven challenging to design.

BOX 3. AI-ENABLED ADVANCES IN PROTEIN DESIGN

continued on next page >
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AI-Enabled Design of DNA, Biological 
Circuits, and Cells

Interest in engineering biology has grown over the 
past 20 years, with the vision of using biological 
systems to provide a wide range of products 
and to address difficult challenges such as 
achieving carbon sequestration and preventing 
environmental degradation.25 As the field has 
progressed, bioengineering researchers and 
practitioners have worked hard to make it more 
of an engineering discipline than one requiring 
bespoke designs. Standardized languages, such 
as the Synthetic Biology Open Language,26 and 
standardized biological components have enabled 
the application of design thinking to biological 
systems. Many experts pointed to significant 
investment in these areas, which they believe will 

support further development of AI biodesign tools 
to progress toward this set of goals.

That being said, AI biodesign tools for applications 
beyond protein design face significant challenges, 
and most are not yet mature. Tools such as 
ExpressionGAN can design sequences of DNA 
to better control the timing, the conditions 
required for protein production, and the amount 
of protein production in a cell.27 Other DNA design 
tools can generate DNA sequences that take on 
a specific three-dimensional shape—known as 
DNA origami—or bind tightly to targets to act as 
biosensors or antibodies.28 Researchers have 
also developed LLMs that use DNA sequence data 
instead of natural language as foundation models 
that can be fine-tuned for specific tasks, for 
example, predicting sequences of DNA that will 
regulate gene expression or protein production.

Some model developers speculate that if we used the same amount of computational 
resources as LLMs when training protein language models, we could significantly improve 
their performance. However, there is significantly more natural language data available than 
carefully annotated biological sequence data. Furthermore, while there are many biological 
sequences online, many of them do not actually provide much new information. This is because 
many of the biological sequences that do exist are highly related; for example, many are 
variants of the same protein and may include non-functional variants. Larger protein design 
models often use a subset of this data and remove highly similar sequences to improve the 
model’s performance.

How to determine a protein’s function from its sequence remains a fundamental question 
in the life sciences. Researchers have found that as AI models are trained on more data, 
structure prediction improves at roughly twice the rate of function prediction, reflecting the 
greater difficulty of predicting biological function.24 AI models are capable of predicting which 
mutations will disrupt the function of a protein or non-coding sequence but cannot predict if a 
mutation will result in a new function. Existing functional prediction benchmarks are typically 
limited to a small number of cases for which many data points are available and can predict 
only a narrow range of functions. Therefore, although AI models are likely to improve our 
understanding of the links between protein structure and function, much more work is needed 
to make these predictions broadly reliable.

Box 3. AI-Enabled Advances in Protein Design (continued)
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There is also significant interest in AI biodesign 
tools to design metabolic pathways—genetic 
circuits in bacteria or yeast that can produce a 
range of small molecules—which are important 
for biomanufacturing. For example, AI tools such 
as novoStoic and RetroPath229 can help choose 
efficient pathways for producing small molecules, 
optimize the genetic components of a pathway, 
and design cells that will grow in large bioreactors 
(vessels used to manufacture biomolecules at 
scale).30 Companies are likely to make substantial 
investments in generating data to improve these 
types of tools because significant economic 
drivers exist for these advances.31 However, 
current work in this area predominantly focuses 
on specific strains of bacteria and yeast and 
does not transfer well to new species, limiting 
the applicability of these advances to pathogens, 
human cells, or other living systems.

Some experts believe that AI biodesign tools 
will expand the frontiers of what is biologically 
possible, allowing the design of sequences and 
functions that are unlike those found in nature. 
Experts are divided on when this will be achieved; 
many believe that progress will concentrate in 
areas that receive large amounts of funding and 
in which it is possible to quickly generate large 
amounts of data. Still, some believe that these 
capabilities will emerge within the next five years 
as a result of the acceleration of design-build-
test cycles, driven by greater testing throughput, 
improved design accuracy, and automated 
measurement of results, which will help generate 
data for training AI biodesign tools.

Limitations of Biodesign Tools

Experts pointed to several limitations in the 
capabilities and use of AI biodesign tools. A major 
limiting factor, as noted, is the availability of 
training data. Models generally perform well where 
large, labeled data sets exist (e.g., for protein 
structure) and poorly outside of these specific 
areas. Technical areas with strong economic 
drivers, such as metabolic engineering for 

industrial processes and high-throughput assays 
for measuring protein characteristics, will likely 
produce this type of large data set. Government-
supported efforts, such as national strategies for 
genomic pathogen surveillance, will also boost 
data availability. However, experts repeatedly 
pointed out that biological systems are complex 
and that our ability to measure and generate 
reliable data about biological functions is limited. 
Progress may therefore be slow.

Experts in AI biodesign tools reported that only a 
fraction of designs generated by a given tool are 
successful, and that a large number of designs 
need to be created and experimentally tested to 
select the best candidates for further work. In 
addition to requiring the laboratory infrastructure 
and know-how to conduct these experiments, 
this limits designs to characteristics that can be 
evaluated efficiently in a laboratory. Furthermore, 
mistakes made by biodesign tools compound, 
so the more biological parts and desired 
characteristics the design tool needs to consider, 
the lower the likelihood of a successful design. 
Researchers are exploring ways to improve these 
models by linking experimental outputs directly 
back into the models to enable iterative learning.

The utility of AI biodesign tools is currently limited 
by users’ ability to express what they want in 
a language that the models can interpret. This 
requires expertise. For example, a biodesign 
tool that designs proteins for improved binding 
to a target molecule may require a user to input 
parameters that are based on the user’s detailed 
technical knowledge about the location of atoms 
at specific places in three-dimensional protein 
structures. Some experts believe that in the future, 
these tools will enable users to design proteins 
that bind a wide range of targets without having 
detailed knowledge, such as understanding the 
details of their molecular structures. Experts 
point out that the integration of chatbots with 
these cutting-edge tools could facilitate this 
communication in natural language, thereby 
making biodesign tools more accessible to those 
with considerably less expertise.
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Automated Science
The term “automated science” refers to the use 
of AI to automate steps in scientific discovery 
or the transfer of the entire process to AI. One 
of the challenges in scientific discovery is the 
vast number of possible experiments that could 
be conducted, making systematic exploration of 
all options by humans impracticable. AI has the 
potential to revolutionize scientific discovery 
by automating this exploration and intelligently 
choosing the scientific questions that are likely 
to be the most informative and useful to explore. 
These models can simulate larger systems than 
humans can—for instance, the interactions of 
millions of particles.32 However, AI struggles to 
capture the rules that govern complex interacting 
systems with existing data. The ability to make 
targeted changes to biological systems and 
measure their effects will improve the ability of AI 
models to interpret these causal relationships.

AI tools have been used for all steps in the 
scientific process: researching literature, 
generating hypotheses, designing experiments, 
writing software, programming instructions for 
robotics platforms, collecting data, and analyzing 
and interpreting results (for more details, see 
box 4). Some experts believe that more steps will 
become automated in the near future and that 
it may become difficult to avoid interacting with 
AI when carrying out some types of scientific 
research.

As an example of automated science advances, in 
2009, scientists developed a robot scientist, called 
Adam, that discovered the functions of poorly 

characterized genes in yeast and only required 
human assistance with replenishing experimental 
reagents and removing waste.33 Eve, developed by 
the same group of scientists in 2015, automated 
early-stage drug discovery to identify new drugs 
for treating neglected tropical diseases.34 In 2020, 
a team in Liverpool developed a free-roaming 
laboratory robot that could autonomously search 
for catalysts to initiate a desired chemical 
reaction.35

A more recent approach to automated science is 
the development of autonomous AI agents that can 
interact with multiple AI tools to coordinate the 
completion of a complex task. Examples include 
AutoGPT, which chains together “thoughts” 
generated by an LLM to autonomously achieve 
a goal, aided by its ability to search the Internet 
and interact with available applications, ranging 
from simple calculators to advanced AI biodesign 
tools. An example in chemistry is ChemCrow, 
which enables the design of chemical synthesis 
processes using natural language requests, 
such as “synthesize ibuprofen.”36 Recently, 
researchers used ChatGPT to write a scientific 
paper from scratch.37 Provided with a data set, 
ChatGPT formulated a question, wrote code to 
perform the analysis, described its methods, and 
interpreted the findings. Its initial attempts at 
coding contained mistakes, and parts of the paper 
contained fabricated information, but additional 
human prompting corrected these errors.

Some experts expressed concerns about 
automated science because most users of AI 

AI tools have been used for all steps in the scientific process: researching 
literature, generating hypotheses, designing experiments, writing 
software, programming instructions for robotics platforms, collecting 
data, and analyzing and interpreting results.
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AI is already contributing to many steps in scientific research, and it is likely that AI tools for 
automated science will become more integrated in the future to provide a more comprehensive 
AI-enabled scientific discovery process.

Literature research

AI has substantially improved tools that aid background research. Tools such as scite and Elicit 
use LLMs to query, interpret, and summarize scientific literature, as well as to allow claims to 
be checked against original source material to ensure the accuracy of the information they 
provide. ResearchRabbit builds networks of related research papers based on citations.

Hypothesis generation

Natural language processing of scientific literature can capture complex concepts and make 
accurate scientific predictions. These models group words that occur in similar contexts, 
allowing the identification of relationships between words, such as “cat is to kitten” as “dog is 
to puppy.” These capabilities have been demonstrated to recommend promising hypotheses, 
such as suggesting materials for functional applications in materials science years before their 
discovery.38 Limitations for identifying good hypotheses include inaccuracies in published 
scientific findings,39 LLM hallucinations of incorrect information, and poor ability to judge the 
novelty of a hypothesis.40 However, tools designed specifically to seek novelty do not face such 
limitations.

Experimental design

Experimentation is often an iterative process, which can be time-consuming and inefficient. 
AI can collect existing data on a problem—for example, how mutations in an enzyme change 
its efficiency—and form a map of promising mutation spaces. AI can then select subsequent 
experiments that explore areas with little data and exploit areas that produce promising 
results,41 reducing the total number of experiments required and producing better outcomes. 
LLMs are currently poor at formulating complex, strategic plans. They tend to have a short 
“memory,” meaning they forget the start of a plan as they progress through it. However, AI 
“agents” with different interacting modules have shown more promise in achieving this long-
term planning. These agents can describe high-level plans while other more specific models or 
tools fill in the details of how to accomplish each step.

BOX 4. ELEMENTS OF AUTOMATED SCIENCE

continued on next page >

tools do not have a strong understanding of how 
they work, which could lead to an overestimation 
of their abilities and blind trust in their outputs. 
Users could also assume that algorithms process 
information in the same way that humans do, 

leading to surprises when AI fails in ways that a 
human would not. AI models often work as “black 
boxes,” making it difficult to understand and 
validate the scientific insights that they generate.
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Writing software

General-purpose LLMs can successfully write software code to carry out various tasks 
but struggle with generating code for more complex or specialized tasks that are not well 
represented in the training data. More specialist tools, such as Github Copilot, interact with 
users as they are programming, detecting what the user intends to write and automatically 
filling it in, which can result in completing projects more quickly.42

Coding instructions for robotics platforms

AI can write software to control laboratory robotics platforms.43 The development and 
refinement of laboratory protocols can take weeks or months, but laboratory robotics 
companies are working to enable AI to design laboratory protocols for well-documented 
experiments described in scientific literature and to interact with commercially available 
molecular biology kits. Laboratory work is not currently standardized and documented 
enough to fully automate laboratory protocols, but there is strong pressure to create this 
standardization. However, the limitations on automating lab work in biology are substantial. 
Biology is not digital, and the physical constraints of working with biological materials are a 
major barrier to full automation. Current laboratory robotics workflows are better suited to 
simple experiments and conditions with a high degree of initial setup and investment, limiting 
the generalizability of robotic techniques. Robotics platforms struggle with viscous liquids, 
unfamiliar lab equipment, and mammalian cells. They must also be adjusted and optimized for 
different organisms.

Data collection

Machine learning can be incredibly data intensive. Historically collected data may not be 
suitable for machine learning if such data were not collected in a standardized way. Some 
experts stated that the automation of data production would be key to continuing advances 
in our ability to design biology with AI. In some settings, data collection is already routinely 
automated—for example, in high-throughput genome sequencing of pathogens by public 
health agencies—but this automation is limited in its sophistication.

Analysis and interpretation

Automated analysis of large data sets is a key focus, given human limitations. Although 
general-purpose LLMs struggle with logic, they excel at coding for data analysis. AI research 
areas such as knowledge representation and causal inference initially demand human input but 
can surpass LLMs that rely solely on word associations. INDRA is an example of a collection of 
resources for building scientific “reasoning” algorithms, which draw on text information and 
structured databases to collect statements about mechanistic or causal processes in science 
and assemble them into models.44 Equipping agents with the ability to perform their own 
experiments will likely improve their ability to learn which variables cause changes in others.

Box 4. Elements of Automated Science (continued)



The Convergence of Artificial Intelligence and the Life Sciences

Biosecurity Implications

The same AI-bio capabilities that will provide significant benefits may 
also empower malicious actors to misuse biology to cause harm, with 
potentially catastrophic global consequences. Key questions about the 
biosecurity implications of these models include:

What are the main concerns about biosecurity risks in the application of AI 
or machine learning methods to the life sciences and to engineering living 
systems, if any?

Will advances in AI and AI biodesign tools reduce barriers to engineering 
pathogens and other biological agents? What obstacles will likely remain in 
the next two to five years?

What types of AI models and AI biodesign tools carry the biggest risk of 
misuse?

How can the scientific community leverage AI advances to bolster biosecurity 
and pandemic preparedness?
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LLMs, AI biodesign tools, and AI-enabled 
automated science are likely to change the 
landscape of biosecurity risks in different ways, 
depending on the number and type of actors 
that may use them and the types of capabilities 
they confer (see Figure 1). Many experts believe 
that LLMs could expand the number of people 
able to cause harm with biology. They could help 
malicious actors become familiar with a range 
of known biological agents and could provide 
resources that help them obtain, construct, or 
otherwise develop these agents. However, experts 
disagree about the implications that this may 
have for biosecurity, as some believe that the 
information provided by LLMs can already be 
obtained in other ways and that malicious actors 
would need additional skills and resources beyond 
what an LLM could offer.

AI biodesign tools generally focus on narrow 
scientific questions, and they are used by 
researchers and others with significant scientific 
expertise. Although fewer people are likely to 
use these tools, some experts believe that they 
are more likely than LLMs to generate biological 
designs for novel toxins, pathogens, or other 
agents that could be more harmful than those 
found in nature. However, biodesign tools are 
currently limited in the types of designs they can 
reliably generate, and there is uncertainty about 
how quickly this will change.

Any malicious actor hoping to engineer a biological 
agent will face significant hurdles beyond 
obtaining a design, including access to biological 
components, laboratory infrastructure, and 
laboratory training sufficient to build, test, and 
deploy the designed agent. Experts in AI biodesign 
tools also cautioned that the designs created by 
these tools require validation. Users need time 
and expertise to evaluate and optimize the many 
candidate designs that these models produce. For 
all AI-bio capabilities, the biosecurity implications 
depend both on the characteristics of the AI tools 
and the resources and abilities of the actors who 
might misuse them.

Large Language Models
LLMs are broadly enabling technologies that 
can quickly bring together publicly available 
information and communicate highly technical 
information to non-experts. Although many of the 
most powerful LLMs have some access controls, 
mainly for commercial and competitive purposes, 
most experts believe that reasonably powerful 
LLMs will likely continue to be openly available to 
the public. LLMs are also rapidly advancing, and 
models that are considered powerful today are 
likely to become obsolete very quickly.

There are many ways that LLMs could be used 
to cause harm, from providing instructions for 
building bombs and exploiting cybersecurity 
vulnerabilities to suggesting destructive behaviors 

FIGURE 1

LLMs and AI biodesign tools are likely to shift 
the landscape of risks of accidental or deliberate 
misuse of biology. LLMs may enable more 
actors to cause harm, while future biodesign 
tools may increase the ceiling of harms that 
could be caused by a biological agent. 

Source: Figure adapted with permission from Jonas 
Sandbrink, “Artificial intelligence and biological misuse: 
Differentiating risks of language models and biological 
design tools” (submitted manuscript, August 12, 2023), 
arXiv, https://arxiv.org/abs/2306.13952.
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to at-risk individuals.45 For biosecurity-specific 
hazards, experts raised many different types of 
concerns. Some believe that LLMs could raise 
awareness about potential routes to misuse 
biology to cause economic or environmental 
damage, for example, by targeting agriculture 
or vulnerable ecosystems. LLMs could also 
exacerbate or create opportunities for 
misinformation or disinformation, which could 
intersect with biosecurity by undermining public 
confidence in public health efforts, injecting 
false information into pathogen surveillance or 
response systems, or incorrectly assigning blame 
for causing an epidemic or pandemic.

Beyond these broad biosecurity concerns, 
nearly all experts pointed to the possibility that 
a malicious actor could use an LLM to obtain 
information on how to use a toxin, pathogen, 
or other biological agent to cause harm. LLMs 
could also direct such a person to additional 
resources or tools helpful for obtaining biological 
components, such as pathogen DNA, and getting 
up to speed on simple laboratory techniques. 
However, experts are divided on how useful this 
information might be. Some argue that although 
LLMs can gather information more quickly, they 
add very little to what has long been possible 
by searching the Internet for publicly available 
information. In addition, LLMs may “hallucinate” 
incorrect information and present it as true, and 
individuals without expertise may be unable to 
recognize this misdirection.

Experts also disagree about the level of tacit 
knowledge about laboratory techniques that LLMs 
can provide and how much of this knowledge 

is necessary to generate, scale up, and deliver 
a harmful biological agent. As described in 
the previous section, LLMs may be helpful for 
inexperienced scientists by providing information 
about laboratory techniques and suggestions 
when an experiment fails. Future LLMs may be 
able to provide more extensive and accurate 
feedback that incorporates recorded videos of 
experimental procedures and other types of 
inputs. Still, many experts in laboratory bioscience 
believe that a malicious actor would likely face 
hurdles to generating a pathogen that would 
require significant resources, infrastructure, and 
multifaceted expertise to overcome (box 5).

To get around the challenge of developing 
laboratory skills and tacit knowledge, LLMs have 
directed users to opportunities for outsourcing 
laboratory experiments and infrastructure 
to contract research organizations and other 
vendors.46 The extent to which a malicious actor 
could successfully contract with such external 
vendors to facilitate the construction and scale-
up of a harmful biological agent remains unclear. 
Still, several experts highlighted this type of LLM 
behavior in calling for additional biosecurity 
oversight among providers of life sciences 
products and services (see Risk Reduction 
Opportunities).

Experts believe that LLMs will also help people with 
expertise in one area develop expertise in related 
fields. For example, LLMs could help someone with 
some training in molecular biology quickly find 
relevant literature and important information about 
virology, including how to generate infectious 

agents from non-infectious components. These 

Nearly all experts pointed to the possibility that a malicious actor could 
use an LLM to obtain information on how to use a toxin, pathogen, or other 
biological agent to cause harm. However, experts are divided on how 
useful this information might be.
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A malicious actor or small group would face several technical barriers in trying to generate an 
infectious agent. A previous NTI report on another type of enabling biotechnology, Benchtop 
DNA Synthesis Devices: Capabilities, Biosecurity Implications, and Governance,47 detailed these 
hurdles, which include synthesizing pathogen genomes, “booting up” infectious agents from 
DNA, and designing successful alterations to pathogens.

LLMs may be able to provide guidance that would help reduce barriers related to synthesizing 
pathogen genomes by providing details on DNA sequences to order and simple instructions 
on how to combine them into longer stretches of DNA using standard molecular biology 
techniques. However, for most pathogens, generating an entire genome would still require 
significant expertise and troubleshooting abilities.

Most viral pathogen genomes are not infectious on their own, and making them into viable 
pathogens requires laboratory infrastructure and knowledge about how to generate infectious 
agents from their genomes. LLMs could help reduce this barrier by bringing together 
information on necessary reagents, biological components, and published protocols on how to 
do this. One expert believes that recent advances in virology have further reduced this barrier.

It remains difficult to generate designs of pathogens with specific characteristics, but it is 
possible that AI biodesign tools will be able to surmount this barrier in the future by providing 
candidate designs. These designs would still require experimental validation. AI-enabled 
laboratory automation could facilitate some of this work, but automation of some types 
of experiments will remain difficult, including those involving viral pathogens or complex 
pathogen traits (e.g., transmissibility).

BOX 5. HURDLES TO PATHOGEN ENGINEERING

users may already have tacit knowledge related 
to laboratory techniques and access to laboratory 
infrastructure, and they may be better able to 
distinguish useful information from an LLM’s 
incorrect hallucination. These medium- to high-
skilled users could obtain information related to 
biological agents without access to an LLM, but 
LLMs may facilitate the process.

Because current LLMs draw on information that 
is readily available, most experts believe that 
they are unlikely to generate designs of biological 

agents that are outside of already established 
risks. A few experts believe that LLMs could already 
or soon will be able to generate ideas for simple 
variants of existing pathogens that could be more 
harmful than those that occur naturally, drawing 
on published research and other sources. Some 
experts also believe that LLMs will soon be able to 
access more specialized, open-source AI biodesign 
tools and successfully use them to generate a wide 
range of potential biological designs. In this way, 
the biosecurity implications of LLMs are linked 
with the capabilities of AI biodesign tools.
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AI Biodesign Tools
Current AI biodesign tools generally focus on 
narrow scientific questions, are trained on 
scientific data, and require significant scientific 
expertise to use and to interpret their outputs. 
Some experts believe that in the coming years, 
these tools will be able to provide abstraction 
to biological engineering, reducing the need for 
user expertise. As noted earlier, open-source AI 
biodesign tools could become more accessible by 
LLMs, which can help users understand how they 
work. Some companies are developing AI biodesign 
tools with access controls for commercial and 
competitive purposes, but most AI biodesign tools 
are currently developed in academic settings and 
either are openly available or have open-access 
equivalents.

AI biodesign tools provide insight into biological 
systems that would be very difficult for humans to 
generate on their own, and many experts believe 
that they could be misused by someone aiming 
to design toxins, pathogens, or other biological 
agents to cause harm. The potential for misuse 
of these tools is often closely related to their 
intended, benign use. For example, if a design tool 
is capable of minimizing the possibility of harmful 
interactions in the human body, it is equally 
capable of maximizing that possibility. Tools 
used for public health purposes to predict which 
pathogens and their variants have the greatest 
pandemic potential could also create a shortlist 
of promising candidates for a biological weapon. 
Some experts believe that AI biodesign tools 
are more likely than LLMs to generate biological 
designs for toxins, pathogens, or other biological 
agents that are unlikely to evolve naturally or that 
may be more harmful than those found in nature.

Currently, the most advanced AI biodesign tools 
are tools for designing individual proteins, which 
experts believe could be misused to design novel 
toxins; protein domains, to target specific tissues 
within the body with toxic elements; or other 
harmful proteins such as prions. A few experts 

noted that these tools might not be as useful for 
the more complex task of engineering pathogens 
in more fundamental ways. Although other types 
of biodesign tools are not yet as reliable as 
protein design tools, they could also be misused. 
For example, tools that facilitate the design or 
optimization of genomes or metabolic pathways 
could help design or scale up the growth of 
bacteria that produce harmful substances. Some 
experts raised the concern that AI biodesign tools 
could be fine-tuned in a variety of ways, trained 
on pathogen data, or used in combinations to 
generate designs for pathogens that are more 
robust, or harmful, or more easily scaled to 
large quantities. Further into the future, some 
experts believe it will be possible for AI models 
to facilitate the design of new types of biological 
agents, expanding the boundaries of what can be 
accomplished with biology and raising the ceiling 
of potential harms.

Notwithstanding these risks, as discussed earlier, 
there are serious limitations to what AI biodesign 
tools and their users can accomplish. Experts 
familiar with these tools reported that they provide 
many different candidate designs that need 
experimental evaluation, which requires time, 
resources, and expertise. For example, experts 
reported that protein design tools are considered 
successful if 20 to 50 percent of their designs 
meet their intended design criteria and that 
further work is needed for optimization.

The complexities of living systems further limit 
the ability of these tools to predict the biological 
consequences of different designs and variations. 
For example, it will be relatively easy to predict 
the effect of a genetic mutation in a single protein 
on its interaction with another single molecule, 
as compared to the more complex downstream 
effects that may arise through a cascade of 
interactions involving many genes and proteins 
in the context of a whole cell. Predicting the 
consequences of biological designs becomes 
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even more challenging when adding complexities 
related to interactions with genetically diverse 
human hosts, transmissibility within large 
populations, and other features of potential 
biological weapons (box 6). For this reason, some 
experts are less concerned about the possibility of 
an AI biodesign tool successfully designing wholly 
new types of biological agents. Designs for simpler 
alterations to existing proteins, pathogens, and 
agents are likely to be more reliable, at least in the 
near term.

Many experts pointed to a near-term and specific 
risk: AI protein design tools will make it more 
difficult for DNA providers to conduct effective 

biosecurity oversight of ordered DNA. Many of 
these vendors currently screen customers and DNA 
orders to reduce the risk of providing pathogen 
or toxin DNA to customers who lack a legitimate 
use for it or inadvertently selling the building 
blocks of dangerous pathogens to malicious 
actors. Current DNA sequence screening methods 
evaluate how similar ordered DNA sequences are 
to known pathogen or toxin DNA. However, new 
AI protein design tools can design proteins that 
have very little similarity to known pathogen or 
toxin sequences but have the same functions and 
pose the same risks. These tools could allow the 
redesign of existing hazards, thus evading DNA 
sequence screening.

Experts in biological weapons pointed out that much of the challenge in developing an effective 
weapon is anticipating how it will interact with the complex world it is released into. AI tools are 
far from being capable of this level of complex and conceptual analysis.

COVID-19 provides an example. The genome sequence of the SARS-CoV-2 virus became available 
early in the pandemic, but this sequence provided insufficient information to enable scientists 
to predict transmission routes, pathogenicity, or transmissibility. These traits are determined by 
multiple interacting genes belonging to the virus, as well as environmental conditions, genetics, 
and immunological characteristics of possible host populations, and a variety of other factors. 
Scientists also struggled to predict the course of the pandemic because it depended on public 
health responses, the behavior of populations, and other complex social interactions.

Predicting pathogen transmissibility, host range, and virulence from genome sequences using 
AI is an active area of research. However, AI tools struggle to generalize to new strains and 
assume all sequences come from viable pathogens, which may not be true of a newly designed 
strain. They are also data limited; the number of variables the models need to fit is many 
orders of magnitude larger than the number of available examples to learn from, so the tools 
are limited in what they can successfully infer. Infection outcomes are difficult to measure, 
particularly in humans, and laboratory experimental models for mimicking human infection are 
currently rudimentary. Efforts to generate data for AI-enabled risk prediction are ongoing, and 
high-throughput systems for characterizing the risk posed by viral variants, coupled with AI 
analysis of the results, are in development.48

BOX 6. PREDICTING PATHOGEN TRAITS
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Automated Science
Few experts raised concerns about the risks posed 
by the misuse of automated science by malicious 
actors. Those who did pointed to the creation of 
AI models such as ChaosGPT,49 an LLM designed 
to pursue the destruction of humanity and other 
malicious objectives, and believe that a similar 
AI model could someday be designed to misuse 
biology. An AI agent could achieve its aims, for 
example, by using AI biodesign tools and by 
outsourcing laboratory work. Some experts also 
believe that the use of AI-enabled automation 
could contribute to a larger program for biological 
weapons development or production, such as 
one run by a state actor. Another concern is the 
potential misuse of knowledge and data produced 
by automation. In particular, data on pathogen 
functions of concern are currently only sparsely 
available, but automation that produces such data 
for public health purposes could provide training 
data for AI biodesign tools. These additional data 
could expand the capabilities of AI biodesign tools, 
including their potential for misuse.

Biosecurity Benefits of AI-Bio 
Capabilities
AI-bio capabilities are likely to benefit biosecurity 
in many ways. Experts believe that AI tools and 
capabilities will be incorporated into many 
aspects of pandemic preparedness and response, 
including biosurveillance, development of vaccines 
and other medical countermeasures, and logistical 
responses to outbreaks. AI tools also can be 
used to help determine whether novel pathogens 
are genetically engineered and can facilitate 
attribution. The result of these advances will be 
earlier detection of pathogens, faster and more 
effective responses, fewer logistical challenges, 
and better protection against infectious disease. 
(For more details, see box 7.) These implications 
for biosecurity are substantial, and efforts to 
reduce risks posed by AI-bio capabilities should 
also secure these benefits.

AI tools are already contributing to biosecurity and pandemic preparedness and are likely to 
become more integrated into these capabilities in the future.

Biosurveillance

Outbreak reporting tools such as NATHNAC and PulseNet provide data on outbreaks worldwide 
to medical professionals and public health teams that could be processed more efficiently 
using AI. Public health laboratories are automating their data analysis processes to flag only 
concerning trends for human review.50 By analyzing data from returning travelers, AI tools could 
model the frequency of infectious disease importation and trace its origins. When combined 
with genome sequencing, this approach could be instrumental in identifying outbreaks as well 
as uncovering enduring reservoirs of pathogens.51

Many efforts focus on predicting the risk posed by new pathogen strains. AI tools to rapidly 
analyze the DNA of pathogens will enable scientists to identify potential pandemic pathogens 
and high-risk variants before they spread widely. This knowledge guides the proactive design of 

BOX 7. AI FOR ADVANCING BIOSECURITY AND PANDEMIC PREPAREDNESS

continued on next page >
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medical countermeasures. AI is also being used to design DNA, RNA,52 and protein53 sequences 
that can act as biosensors for detecting dangerous pathogens or toxins.

Metagenomic surveillance—for example, of wastewater—can also identify pathogens 
circulating in communities. Given the volume of data produced by these approaches, AI tools 
such as anomaly detection can help flag new threats. Nucleic acid panels are also a low-cost 
alternative to DNA sequencing for continuously monitoring infectious diseases of concern. 
Designing panels that can detect a large number of pathogens can be technically challenging, 
but AI optimization techniques can simplify their design.

Medical countermeasures

Many experts who work with AI protein design tools believe they will substantially improve 
vaccine and antibody design over the coming years. One expert estimated that these tools could 
enable the design of new antibodies based on a pathogen’s genome within days and allow them 
to be produced within weeks. Older methods require months to produce antibodies and require 
access to patient samples. Experts also estimated that mRNA vaccines could be designed and 
deployed in as little as two to three weeks, rapidly stemming outbreaks. AI models can also design 
novel antimicrobial drugs, phage therapies, and protective probiotics, though development of 
these models is more challenging and these tools are not mature enough to scale widely.

Outbreak response logistics

Forecasting the spread of disease can inform policy decisions, direct containment measures, 
and help hospitals prepare for periods of high demand. New methods are incorporating data 
on human movement patterns, reports of symptoms by hospitals or on social media, and 
traditional outbreak modeling using AI. AI can also design optimal delivery routes for tests, 
vaccines, personal protective equipment, and medical countermeasures, and recommend 
infrastructure purchases such as cold-chain equipment to optimize the resilience and 
adaptability of vaccine delivery routes.

Attribution

Recent promising results suggest that AI tools can identify genetically engineered organisms 
and attribute them to their lab of origin.54 These types of tools could help identify actors who 
design harmful biological agents and act as a deterrent. However, attribution tools will be less 
effective if actors can make design choices that allow them to evade attribution.

AI watermarking is another avenue for attribution, in which models place subtle signatures 
in AI model outputs to mark that they were generated by AI. Models could also potentially 
place watermarks unique to the model or user, further facilitating attribution. Watermarking 
technologies have been considered for biological designs for the purpose of protecting 
intellectual property.55 For the scientific community to adopt this approach for marking DNA 
or protein sequences, watermarks would need to preserve the biological activity of the desired 
product.

Box 7. AI for Advancing Biosecurity and Pandemic Preparedness (continued)
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Risk Reduction Opportunities

As AI-bio capabilities are applied to solve challenges in the life sciences, 
they raise the possibility of their misuse to cause harm. There are many 
approaches to reduce these risks, and each approach has advantages 
and drawbacks. This section discusses ideas and perspectives on the 
following key questions:

What risk reduction measures should we consider that will offer meaningful 
protections against the worst risks without unduly hindering scientific 
advances and innovation?

What are the most promising options for safeguarding AI-bio capabilities? 
What approaches are most likely to work?

Who should be responsible at the national and international levels for 
governance and safeguarding of AI-bio capabilities?

www.nti.org 31
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There are many opportunities to reduce the 
risk that AI-bio capabilities could be misused to 
cause harm. Some of these are specific to the AI 
models themselves, including a range of options 
and suggestions for “guardrails” that describe 
how AI models could be developed or controlled 
to minimize the risk. Many experts also believe 
that it will be critical to bolster biosecurity 
oversight at the interface where digital designs 
become physical biological systems, for example, 
by strengthening biosecurity frameworks for 
DNA synthesis providers and other life sciences 
vendors. Some proposed solutions are very broad, 
including the suggestion to invest further in 
overarching pandemic preparedness and response 
capabilities. These different ideas are not mutually 
exclusive, and an all-of-the-above, layered defense 
may be needed to reduce risks most effectively.

For each approach, it will be important to balance 
the need to reduce risks with the need to ensure 
that AI-bio capabilities can be used for beneficial 
purposes. As previously mentioned, many experts 
believe that AI will bring significant benefits for 
the life sciences broadly, and for biosecurity 
and pandemic preparedness specifically. Many 
experts also pointed out that no solutions exist 
that will eliminate all risks related to AI-bio 
capabilities. Each of the approaches described in 
this section should be understood as a hurdle that 
decreases the chances that a malicious actor will 
successfully misuse AI tools to cause biological 
harm and that this misuse will lead to a global 
biological catastrophe.

Guardrails for AI Models
Experts raised many ideas for guardrails that 
are already being implemented or that could 
be further explored to reduce the risk that AI-
bio capabilities are exploited to cause harm. 
These include safeguards built into the models 
themselves, biosecurity evaluations of the models 
and their technical safeguards, as well as ways to 
control access to the models, to computational 

infrastructure, or to the data needed to train 
models. Given how rapidly AI-bio capabilities 
are being developed and the significant 
uncertainty about how they will evolve, many 
experts believe that it will be important to have 
ongoing opportunities for feedback and iterative 
refinement on how guardrails are implemented. A 
few experts noted that guardrails for AI biodesign 
tools in particular are lacking and that this is an 
important area for further development.

Several experts pointed to methods to ensure 
that AI models have appropriate oversight and 
incorporate technical safeguards to limit their 
potential for misuse. Developers of AI models, 
including companies and academic researchers, 
could have an institutional review process to 
ensure that dual-use and ethical considerations 
inform the development and deployment of AI 
models. Such oversight mechanisms are already 
established or are under active development in 
many companies that produce LLMs, but this 
approach has not yet been incorporated into the 
development of AI biodesign tools.

Incorporating Technical Safeguards into  
AI Models

Experts described several technical safeguards 
that some LLM developers are actively 
implementing to reduce a wide variety of risks, 
including those related to biosecurity (box 8).  
For example, developers can train models 
using adversarial approaches to discourage the 
incorporation of harmful concepts into a model. 
Models can also evaluate outputs for harmful 
content before they are shown to the user or 
refuse to answer user requests on specific topics. 
Developers can run safety checks at multiple 
stages during the training process to ensure a 
model is safe during its development. It is not yet 
clear which methods will be most effective, and 
this is an active area of inquiry. Although technical 
safeguards have been developed for a wide range 
of AI models, built-in solutions for AI biodesign 
tools are still lacking.
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To implement and test many of the technical 
safeguards discussed here, model developers 
need to understand the types of biosecurity 
risks that they should guard against, which may 
require detailed information about biological 
agents and vulnerabilities. Yet, this can also pose 
a significant challenge because distributing 
this type of information may be hazardous. 

In addition, experts frequently point out that 
technical safeguards incorporated into models 
are only feasible for models with access controls, 
for example, through an application programming 
interface (API). Malicious actors or others seeking 
to circumvent these types of safeguards could 
easily strip any safeguards incorporated into 
open-source models.

Intervention 
point

Technical 
safeguard Description

Training 
data

Removal of dual-
use training data

AI developers can remove a portion of training data 
gathered from public sources if it is considered risky 
to include, such as papers on dangerous pathogens, 
or laboratory protocols for constructing and booting 
viruses. 

Model 
training 
methods

Adversarial 
training methods

Adversarial methods aim to improve AI models by 
introducing a module to penalize undesirable outcomes. 
For example, adversarial debiasing methods penalize the 
prediction of sensitive characteristics in the data such 
as race or gender. Generative adversarial networks use 
an adversarial component to train the model to produce 
outputs that are indistinguishable from outputs not 
generated by AI. 

Reinforcement 
learning with 
human feedback

Reinforcement learning trains an AI to maximize an 
objective. Human feedback56 tells the AI whether its 
behavior is good or bad, thereby incentivizing the model 
to produce good outputs without needing to explicitly 
define what humans think is good.

Constitutional AI Constitutional AI is a method to train AI models to be 
more helpful and harmless by encouraging them to follow 
certain ethical principles, or a “constitution,” thereby 
reducing the need for human oversight of models.57 

Model 
behavior 
after 
deployment

Refusals and 
blacklisting

Refusals are when AI models refuse to follow user 
requests, typically because the information or action 
requested may be harmful. Alternatively, blacklisting can 
prevent models from using specific words or phrases in 
their outputs. 

BOX 8. TECHNICAL AI SAFEGUARDS
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Intervention 
point

Technical 
safeguard Description

Model 
behavior 
after 
deployment 
(continued)

Watermarks Watermarks are embedded signatures in the generated 
output that are invisible to humans but detectable by an 
algorithm.58 They can be used to signal that something 
has been AI generated or to attribute it to an author. 

Certifiable 
origins

Designs produced by AI could require a cryptographically 
signed certificate detailing the inputs used to design 
an output. These certificates could be required by third 
parties, for example, DNA synthesis companies, to check 
for harmful intent captured in the requests made to the 
model. 

Other techniques 
that attribute 
designs to users

Other methods, such as maintaining server logs, can 
be used to store a record of user behavior that can be 
searched to attribute a design to a user. 

Model 
access

Application 
programming 
interface (API)

People can interact with a model through an API, 
prompting the model and viewing its outputs without 
having a copy of the model.59 

Token-based 
systems

In these systems, users of a model spend “tokens” each 
time they use it to generate outputs. These systems 
can help manage the burden on companies that provide 
access through the cloud or APIs and can be a source of 
income while also limiting misuse.

Evaluating Models

Nearly all experts highlighted the importance of 
evaluating AI models before they are made widely 
available.60 Evaluations can provide important 
information on the effectiveness of built-in 
technical safeguards in preventing misuse and 
how these safeguards could be updated and 
improved. Even in the absence of technical 
safeguards, an evaluation can help determine the 
types of risks that an AI model may pose, thereby 
decreasing the possibility of surprise.

Red-teaming is one commonly cited method of 
evaluation. It is a process in which experts test 
a model to determine if it will provide hazardous 
information or can be misused. Many LLM 
developers have participated in red-teaming 
efforts, either as internal efforts by developers 
to ensure their models were safe to release or by 
contracting with third parties. Experts believe that 
consulting biosecurity experts is a key component 
of these reviews, as many AI developers lack 
the expertise to identify information that raises 
biological risks. Also, given the tendency for LLMs 

Box 8. Technical AI Safeguards (continued)
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to hallucinate incorrect information and to provide 
information with factual errors, expertise is 
needed to evaluate the outputs of models.

In assessing AI’s capabilities and risks, it is 
important to note that most AI models to date are 
static. These models are trained once and rely on 
that historical data to answer queries. Dynamic 
models can be continually retrained or augment 
training with an ability to search the web and 
provide information that is more current. The 
behavior of models that rely only on their original 
training data is easier to anticipate, whereas the 
behavior of models that change over time or that 
retrieve information on an ongoing basis can 
be more difficult to anticipate and may limit the 
effectiveness of evaluation.

Experts expressed uncertainty and a range of 
opinions about how these evaluations should 
be done and what would constitute a “safe” 
AI model. It is also unclear to what extent red-
teaming should test the outputs of these models 
to determine whether they are genuine risks 
or whether the ideas or designs provided will 
ultimately fail. An in-depth evaluation of the risks 
posed by these tools could run into legal and 
ethical barriers. For example, assessing whether 
an LLM can acquire a controlled chemical would 
be illegal, and using a benign chemical as a proxy 
would not fully answer the most relevant question. 
Similarly, evaluators can test whether LLMs and 
AI biodesign tools will volunteer suggestions for 
novel hazardous biological agents, but testing 
whether the designs work might be irresponsible.

Testing may involve building an adversarial 
agent or set of requests, which would require 
knowledge of potential hazards. Experts raised the 
concern that a resource of this type could include 
information hazards (see page 39) both because 
it may contain specific, high-consequence 
risks and because it could act as a roadmap for 
those seeking to bypass model safeguards. One 
technical solution could be to map sensitive 
information to less sensitive proxies, and then test 
the model and implement safeguards on the basis 

of these proxies. However, some experts cautioned 
that model safeguards could perform well on proxy 
data without fully capturing the risks that would 
exist with the actual data.

Monitoring Models

Experts generally believe that it will be important 
to evaluate AI models for their misuse potential 
prior to their release; however, they have low 
confidence that they can capture all forms of 
misuse, particularly because model capabilities are 
not fully explored prior to their release. Therefore, 
a few experts suggested mechanisms to monitor 
the behavior of AI models after their release. 
If a model is run on a developers’ computing 
infrastructure and made available through an API, 
then developers can directly monitor the model’s 
outputs in response to prompts to determine 
whether the model is providing potentially harmful 
information. To make monitoring of AI models 
easier, AI oversight models could monitor model 
outputs and flag concerning results for human 
review.

Absent direct control of AI models, AI model 
developers or others could implement reporting 
mechanisms for users to flag concerning 
behaviors or outputs. For example, systems could 
be established to support public reporting of 
cases in which an AI model has resulted in harm61 
or reporting of risks directly to the developers or 
a third party. As an incentive to report potential 
risks, “bug bounties” could provide financial 
rewards to the reporter.62

Controlling Access to Models

Many experts believe that controlling access to 
AI models is a fundamental strategy to prevent 
their misuse. They point out that any technical 
safeguards that are incorporated into a model to 
reduce its potential for misuse can be stripped out 
if the full model is released as an open-source tool. 
Some LLMs and many AI biodesign tools are fully 
open source.
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Many larger LLMs, including GPT-4, Claude, and 
PaLM, use APIs that allow the model developer 
to keep the model itself closed while enabling 
users to enter queries and receive outputs. These 
APIs enable the model developer to monitor user 
prompts and restrict outputs of potentially harmful 
information. They also enable the developer 
to maintain control over the model, including 
through any of the technical safeguards described 
earlier, and to update the model when needed. 
Some LLM developers restrict access to their 
models to a small group of beta testers early in 
their development as part of a staged release.63 
This type of staging provides an opportunity for 
evaluation and the mitigation of potential risks in 
advance of broad distribution.

Many experts believe that more developers of AI 
biodesign tools should consider access controls 
to reduce the risk of misuse; however, many 
of these tools are developed in the academic 
community, where strong cultural norms support 
open-source resources. Often, tools are developed 
collaboratively across loosely affiliated groups of 
people, and requirements for publication include 
the need for peer review, which often includes 
access to published AI models. The expectation for 
many AI biodesign tools is that they will be used as 
a foundation for future work, including alterations 
of the tool itself to improve it and to apply it in 
novel ways. Furthermore, one knowledgeable 
expert pointed out that maintaining control of a 
model and establishing APIs requires institutional 
infrastructure that may not be available to many 
academics.

Several experts in academia believe that cultural 
norms supporting open-source AI biodesign tools 
could change, but this change would require 
awareness-raising and engagement across the 
academic community, including with publishers 
and funders. These experts emphasized that the 
benefits and drawbacks of restricting access to 
these tools would have to be carefully weighed to 
ensure that this approach does not limit further 
study, collaboration, or scientific progress. 
Because there is a wide range of biodesign tools, 
it will be particularly important to evaluate them 
for misuse potential and to ensure that any 
access restrictions are commensurate with the 
risks that they pose. Additionally, restrictions 
could disproportionately affect researchers in 
low-income countries, raising important equity 
considerations.

Some experts suggested that access controls for 
AI biodesign tools could incorporate customer 
screening or “Know Your Customer” requirements. 
For example, developers of these tools could 
restrict model access to individuals who have 
institutional affiliations and reasonable use 
cases. It is unclear how such a system would 
be implemented by the wide range of model 
developers, many of whom are in academia and 
are not currently equipped to screen users. A 
centralized credentialing system that verifies 
users (as described on page 41) could help in this 
regard.

AI models could also monitor the use of AI-bio 
capabilities and identify concerning behavior 

Many experts believe that more developers of AI biodesign tools should 
consider access controls to reduce the risk of misuse; however, many 
of these tools are developed in the academic community, where strong 
cultural norms support open-source resources.
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by users. Several experts were optimistic about 
the ability of AI to analyze patterns of behavior, 
such as gathering information from an LLM on 
specific topics combined with purchasing life 
sciences products, to identify customers with 
potentially malicious intent. A similar project has 
demonstrated the value of this type of monitoring 
of publicly available data for detecting high-risk or 
illicit nuclear trade.64

A few experts raised the possibility that 
governments could control access to AI models by 
implementing export controls on models that meet 
specific requirements. Owing to the challenge of 
restricting access to software tools, experts see 
this approach primarily as a way to slow the spread 
of these tools rather than a means to prevent 
their use. Also, it may be difficult to implement 
export controls on tools developed as open-source 
resources, including many biodesign tools.

Controlling Access to Computing 
Infrastructure

A small number of experts raised the possibility 
of controlling (or monitoring) access to high-
performance computing infrastructure to ensure 
that powerful AI models are developed only by 
responsible users. This infrastructure includes 
resources provided by large cloud computing 
vendors such as Amazon and Microsoft, as well 
as government-funded infrastructure provided 
for national research and development efforts. 
Because training state-of-the-art AI models, 
particularly LLMs, requires large amounts of 
computational power, access to computational 
infrastructure may provide an opportunity 
for overseeing or restricting the training of 
large AI models. For example, to ensure that 
model developers are legitimate, access to 
these resources could require a license. Cloud 
computing providers could require staged safety 
checks of AI models or other safeguards as part of 
their usage agreements. Chip manufacturers could 
also impose limits on the hardware itself, similar to 
how some graphics cards limit the speed at which 

they can be used to mine cryptocurrency; the 
feasibility of this method is unclear and warrants 
further review.65

However, many experts were broadly pessimistic 
about controlling access to computing 
infrastructure as a means to reduce biosecurity 
risks. They did not believe that high-performance 
computing infrastructure was needed in order 
to build an LLM capable of being misused to 
cause harm. Many of the largest LLMs are trained 
on supercomputers, but techniques have been 
developed to fine-tune large models on modest 
computing resources, such as a personal laptop.66 
Many AI biodesign tools can also be trained with 
modest computing resources. Furthermore, 
model developers are actively pursuing methods 
to decrease the amount of computational 
infrastructure that is needed. Therefore, these 
experts believe that computational infrastructure 
may not provide a meaningful opportunity for 
oversight in the future.

Controlling Access to Data

A few experts believe that restricting access to 
specialized or particularly harmful data could help 
reduce potentially harmful outputs from AI models 
and could prevent bad actors from training their 
own models. Experts listed a wide range of data, 
including, for example, pharmaceutical company 
databases on protein and chemical toxicity, 
publicly available pathogen genomes, gain-of-
function research, and information related to 
historical bioweapons programs. They disagree 
about what types of data should be restricted, 
and many are skeptical about the effectiveness 
of controlling access to data for biosecurity 
purposes. Much of the data described are already 
publicly and redundantly available on the Internet, 
and it would be very difficult to prevent some 
types of models, including LLMs, from accessing 
such data. One solution could be for AI developers 
to agree not to use publicly available data to train 
models. A suite of resources is now available 
to verify whether sensitive data were used to 
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train a model,67 allowing verification of these 
commitments.

A few experts believe that restricting access 
to pathogen genome data in particular would 
unduly hinder legitimate scientific research, 
public health, and biosecurity efforts. In addition 
to affecting research on pathogens, removing 
pathogen data from more general biological 
data sets would substantially reduce those data 
sets because an outsized proportion of DNA and 
protein sequence records in public databases 
originate from pathogens. As a result, the removal 
of access to these data could hamper broader 
efforts, such as development of AI protein design 
tools or protein structure prediction. Other 
challenges to controlling data for this purpose 
are more systematic. For example, many experts 
believe that it would be difficult to decide which 
data should be restricted and who should be 
responsible for controlling access. Depending 
on the type of data, legitimate model developers 
would also need exceptions or ways to access 
the restricted data. All of these questions raise 
important issues of equity and access.

Coordinating Efforts in AI Guardrail 
Development

Many experts, particularly those familiar with 
LLMs, pointed to a need for collaboration and 
diverse expertise to effectively identify and reduce 
biosecurity risks that might arise from AI models. 
Accurately identifying meaningful risks will require 
collaboration with a range of experts in synthetic 
biology, infectious disease, biosecurity, national 
security, and other fields—in addition to model 

developers and others familiar with advances in 
AI. Risk assessments of this type are very new, 
and multidisciplinary efforts will likely be needed 
to understand and track how the risk landscape is 
changing over time.

Some LLM developers have already begun to 
collaborate with biosecurity experts and others to 
evaluate and reduce biosecurity risks related to 
the misuse of their models. However, these efforts 
are ad hoc, and few opportunities exist for model 
developers to learn from others’ experiences. 
Furthermore, awareness and understanding 
of risks and potential solutions vary widely 
across developers, and the development and 
dissemination of best practices could benefit the 
entire community. A few experts pointed out that 
very little information exists about how developers 
of smaller models and those in other parts of the 
world are approaching these issues.

Experts disagree to some extent about how 
open collaboration among model developers and 
others should be. A more open process would 
best ensure participation and engagement of a 
wide range of model developers, including those 
from non-Western countries, and from a broader 
set of experts in biosecurity and related fields. 
However, the need to successfully develop and 
adopt biosecurity safeguards would have to 
be balanced with the need to limit information 
hazards. Furthermore, it is not clear how much AI 
model developers, particularly those developing 
LLMs, will be willing to share about their technical 
safeguards because the details of how these 
methods are implemented might reveal proprietary 
information or raise intellectual property concerns.

Accurately identifying meaningful risks will require collaboration with 
a range of experts in synthetic biology, infectious disease, biosecurity, 
national security, and other fields.
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Managing Information Hazards

Experts repeatedly expressed concern that efforts 
to reduce risks related to the use of AI in the life 
sciences could generate information that could 
enable a malicious actor. These information 
hazards could include a list of pathogens or ideas 
that biosecurity experts believe are especially 
dangerous, a database of protein functions of 
concern, or a resource that highlights types of 
data or information as especially enabling for 
development of bioweapons. This challenge is 
compounded by the need for broad collaboration 
among model developers, biosecurity experts, and 
others, as described earlier.

Despite the risk, many experts stressed the need to 
develop these resources so that model developers 
can effectively implement safeguards. A few 
experts, including some familiar with LLMs, have 
been frustrated at the reluctance of experts to 
describe risks with specificity, which they say has 
hindered efforts to mitigate potential harms and 
exacerbated uncertainty about the level of risk.

Experts concerned about information hazards 
were divided about how they should be managed. 
A few believe that risk reduction efforts likely to 
raise significant information hazards should take 
place in closed environments within government 
intelligence or security agencies. Some believe 
that government-supported development of 
these risk reduction tools and resources should 
be done collaboratively with a restricted set of 
trusted model developers, companies, institutions, 

or individuals who need to have access to this 
type of information to develop or implement 
safeguards. One knowledgeable expert suggested 
that a formalized mechanism independent of 
governments would be best positioned to balance 
the need to share information with the need to 
prevent dissemination of information hazards.

Existing legal frameworks also restrict what 
types of information can be shared with AI 
model developers, model testers, and others. 
Export control laws currently capture technical 
information that could be used in a biological 
weapons program,68 but it is not clear what types 
of resources might fall into this category. For 
example, experts familiar with current software 
tools and databases for DNA sequence screening 
report significant uncertainty about whether 
these resources fall under export control regimes. 
It is likely that the same uncertainty will apply 
to the range of tools developed in the future 
for understanding and reducing risks related to 
AI-bio capabilities. Several experts believe that 
export control laws should be clarified to facilitate 
responsible sharing of information.

Another important point raised by security 
experts is that any data that are publicly released 
or documents that governments declassify are 
likely to be quickly incorporated into LLMs and 
will be more readily available to the public. This 
factor should be considered as governments and 
others determine what types of information and 
databases should be released and how.

Experts repeatedly expressed concern that efforts to reduce risks related 
to the use of AI in the life sciences could generate information that could 
enable a malicious actor. Despite the risk, many experts stressed the 
need to develop these resources so that model developers can effectively 
impelement safeguards.
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Bolstering Biosecurity at the  
Digital-Physical Interface
The digital-physical interface in biology refers 
to the point when an actor begins to develop 
a digital design produced by an AI model into 
biological reality. As described in the previous 
section, access to biological components, 
laboratory infrastructure, and scientific skills are 
significant hurdles that a malicious actor would 
face in attempting to misuse AI-bio capabilities to 
generate a biological agent. For this reason, many 
experts believe that the digital-physical interface 
is an important point for oversight. Biosecurity 
could be improved at this interface in several ways, 
including strengthening biosecurity frameworks 
for DNA synthesis screening and improving 
and expanding customer screening practices 
to a broader range of providers of life sciences 
products, services, and infrastructure.

Strengthening DNA Synthesis Screening

Many experts believe that expanding DNA 
synthesis screening practices is an important 
way to reduce the risk that a malicious actor will 
gain access to pathogen or toxin DNA. As noted 
earlier, many DNA providers already conduct 
biosecurity screening, which includes both 
screening of customers to ensure their legitimacy 
and screening of DNA orders to determine if 
the sequences match known pathogen or toxin 
DNA.69 In 2010, the U.S. government issued 
guidance that recommends these practices 
among DNA providers,70 and an updated version 
of that guidance is expected soon. This type of 
screening is not yet required anywhere in the 
world, and incentives are lacking. Many experts 
believe that strengthening this framework 
by establishing regulations or other types of 
incentives will be important as AI-bio capabilities 
could enable a broader range of people to 
attempt to misuse biology. To further expand DNA 

synthesis screening internationally, a few experts 
suggested additional support for the International 
Biosecurity and Biosafety Initiative for Science,71 
an organization incubated by NTI and expected 
to launch in late 2023 to strengthen global norms 
and provide resources needed for DNA synthesis 
screening.

Several experts also pointed out that new technical 
approaches for DNA sequence screening will be 
needed to keep pace with new DNA and protein 
designs from AI biodesign tools. Current DNA 
sequence screening tools evaluate sequences 
based on their similarity with known pathogen and 
toxin DNA and cannot detect sequences designed 
to cause harm, if they diverge significantly from 
natural sequences. AI protein design tools will 
enable the development of novel toxins with the 
same function as known toxins but different 
biological sequences.

A few experts called for dedicated funding to 
support a research program to bring DNA sequence 
screening up to date with current threats. A 
program of this type would entail developing AI 
models that can identify novel sequences designed 
to function in the same way as known hazards. 
Experts pointed out that implementing and sharing 
these models with DNA providers internationally 
will require a reevaluation of legal frameworks, 
including export control rules, that can hinder the 
sharing and updating of DNA sequence screening 
tools. These models would also require the 
development of detailed resources and databases 
containing functions of concern, which could pose 
an information hazard and so should be developed 
responsibly. An additional solution to this problem 
could be for DNA synthesis companies to require 
certifiable origins—which detail the inputs used 
to design an output— for orders generated by AI 
biodesign tools (see box 8).



The Convergence of Artificial Intelligence and the Life Sciences

www.nti.org 41

Expanding Customer Screening

An important part of protecting the digital-physical 
interface for biology is screening customers to 
ensure that they have a legitimate use for life 
science products and services. As mentioned 
earlier, many DNA providers conduct customer 
screening as part of their biosecurity oversight,72 
but few, if any, guidelines or requirements exist 
for customer screening by other vendors of life 
sciences products, services, or infrastructure. 
Furthermore, LLMs have been shown to flag 
opportunities for outsourcing of laboratory skills 
and infrastructure, for example, to contract 
research organizations,73 which could unknowingly 
facilitate the development of a harmful biological 
agent. It will be important for these types of 
organizations to take biosecurity precautions.

Several experts highlighted the need to expand 
customer screening practices to parts of the life 
science supply chain beyond DNA providers.74 
Other types of providers—such as academic 
core facilities, cloud labs, and contract research 
organizations—could also adopt customer 
screening practices. This would help ensure that 
they do not provide equipment, tools, or services 
to illegitimate users who may wish to cause harm. 
Some experts recommended identifying which 
vendors provide the materials and equipment 
most needed for the development of dangerous 
biological agents and focusing particular 
attention on those vendors. A few also mentioned 
strengthening frameworks for sharing of materials 
and products among researchers to ensure that 
products purchased for legitimate purposes were 
not obtained and misused by third parties.

Expanding the number and type of institutions and 
vendors expected to conduct customer screening 
will be challenging. Customer screening by DNA 
providers, for example, is not universal, and 
current methods are burdensome, inconsistent, 
inefficient, and ad hoc. To solve this problem, a 
few experts pointed to methods used by other 
sectors that have implemented “Know Your 
Customer” approaches that could be adapted for 
the life sciences.75 Others suggested a centralized 
customer verification framework that would give 
consumers credentials that they could take to a 
range of life sciences and AI model providers.76 
Centralizing screening would allow a single 
organization to perform effective screening 
rather than depending on many providers to do so 
independently. Furthermore, a centralized system 
also could make it possible to track a constellation 
of behaviors and purchases made using provided 
credentials, providing an opportunity to identify 
concerning patterns indicative of malicious intent. 
For example, repeated attempts to evade DNA 
synthesis screening could be logged, allowing for 
flagging of penetration testing done in attempts 
to access restricted materials. In the future, AI 
models could be developed to automate many 
aspects of customer screening.

It is worth noting that implementing a 
credentialing process or centralized screening 
system for life sciences practitioners would 
require significant outreach to those communities 
and could face resistance in a culture that has 
been dedicated to expanding access to the tools 
of engineering biology. Although many scientists 
who work with pathogens or in public health may 
be attuned to the risks and willing to participate, 
those who work on broader engineering biology 
pursuits may not.

Several experts highlighted the need to expand customer screening 
practices to parts of the life science supply chain beyond DNA providers.
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Advancing Pandemic 
Preparedness
Many experts believe that bolstering pandemic 
preparedness and broader public health 
infrastructure will be critical for reducing 
biosecurity risks in the future, including those that 
arise from the misuse of AI tools. As discussed in 
the previous section, many of these capabilities 
can be improved using AI-bio capabilities (see 
box 7). A few experts described this approach as 
an “arms race” in which those working to prevent 
and respond to pandemics and engineered threats 
will need better funding and more powerful tools 
than those seeking to cause harm. A few experts 
cautioned that the application of AI models to 
pandemic preparedness should be done carefully 
and responsibly. A mistake by an AI model used 
for public health could have serious health 
consequences, shake public confidence, and 
cause de-investment in these approaches. It will 
be important to understand the limitations of 
these models and include human oversight in their 
implementation.

Some experts also believe that the level of effort 
and resources required to prevent the misuse of 
AI-bio capabilities and to adopt a proactive stance 
on biosecurity, including for infrastructure, labor, 
and investment in public health, will be far more 
than the level of effort and resources that may be 
required to produce a harmful biological agent and 
release it. The level of investment by governments 
and others to safeguard public health is already 
high, but the widespread availability of AI-bio 
capabilities may further reinforce the need for 
pandemic preparedness capabilities.

Roles and Responsibilities
Reducing risks at the intersection of AI and the 
life sciences will necessarily involve a wide range 
of actors from international organizations and 
governments to individual AI model developers, 
users, and scientists.77 Key actions identified 
by experts include establishing new types of 
coordination bodies and oversight mechanisms, 
bolstering governance frameworks, funding risk 
reduction initiatives, and pursuing many ways to 
develop, incentivize, and implement safeguards 
for AI models. Importantly, the most powerful 
and impactful AI models are being developed by 
industry and academia, which have their own 
strengths, weaknesses, and constraints (box 9).  
These groups will play important roles in the 
oversight of these technologies, alongside 
governments, funders, and other actors.

Many experts emphasized the need for an all-
hands-on-deck approach that incorporates 
a geographically diverse set of stakeholders, 
including those in North America, Europe, Africa, 
and Asia. A few experts believe that a formal 
international body should be established, along 
the same lines as the International Atomic Energy 
Agency, to focus on safety issues related to AI. 
However, others believe that AI is not well suited to 
formal, central oversight of this type because it is 
changing too rapidly and because it will intersect 
with too many different sectors, types of risks, and 
governance bodies and tools.
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Both industry and academia are developing cutting-edge AI models, but they differ in their 
access to resources and the types of models they produce. Industry produces larger, more 
computationally intensive models with commercial applications, while academia produces 
smaller, less-expensive models that often aim to contribute to building foundational knowledge 
in a field. The kinds of models in academia and industry also differ. Only a small number of AI 
labs are able to produce large LLMs, whereas both industry and academia produce biodesign 
tools and automated science tools.

Industry labs excel at developing large, computationally expensive models. They are able to 
undertake projects that require generating and labeling massive data sets, they can build deep 
learning models with billions of parameters and millions of dollars in computing costs, and they 
can afford to hire top AI talent. These three factors underpin modern advances in LLMs and 
are the reason AI industry leaders like OpenAI, Anthropic, Meta, and Google produce the most 
capable LLMs. For biodesign tools, and to a lesser extent LLMs, industry also takes on advances 
in academia and fine-tunes them for specific commercial projects. However, for competitive 
reasons, many companies do not disclose some of their most impressive models and have 
strong incentives to keep their methodology and data proprietary. For example, biotech or 
pharmaceutical companies are able to generate the proprietary data sets needed to train more 
focused biodesign tools and will likely not release data sets that are relevant for commercial 
applications. Importantly, the difference in funding between start-ups and established large 
companies has a direct effect on the size and scope of the models that each chooses to 
construct. Large companies are better positioned to produce large LLMs, and start-ups are 
more likely to develop highly specialized, narrow models with specific applications.

Academia can generate a wider range of novel approaches, producing models for expert 
domains that are less likely to generate profits. Although academia lags far behind industry 
in development of LLMs, many academic AI biodesign tools are on par with or exceed industry 
models. Academic models are generally expected to be open source to validate claims about 
their performance and make research useful to others.

These differences between large, industry LLM developers and smaller biodesign tool 
developers have implications for implementation of guardrails. For example, a few experts 
pointed out that government requirements for many of the guardrails listed in this report may 
serve the commercial interests of larger LLM developers. At the same time, implementation of 
guardrails for specialty biodesign tools is likely to be considered burdensome by developers in 
academia and smaller companies.

BOX 9. CONTRIBUTIONS TO AI MODEL DEVELOPMENT OF INDUSTRY AND ACADEMIA
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Governments

Experts saw several different roles for governments 
in developing guardrails for AI models, providing 
incentives for AI model developers to adopt good 
practices, bolstering biosecurity frameworks at 
the digital-physical interface for biology, and 
supporting programs for improved pandemic 
preparedness and response. Many experts believe 
that governments could develop oversight for AI 
model developers that might include regulations, 
a licensing system for model developers, or 
guidance. Some experts proposed establishing 
oversight for AI models that meet specific 
thresholds and criteria, for example, for LLMs, 
being trained on a certain number of graphics 
processing units (GPUs) or containing a certain 
number of parameters. Development of such 
models could be restricted, or their dissemination 
could be regulated through export controls. 
Policies could also be established that require or 
recommend that model developers implement 
good biosecurity practices. Requirements for good 
biosecurity practices might include, among others, 
that each model include technical safeguards to 
prevent misuse, undergo rigorous evaluation for 
potential misuse, or incorporate staged safety 
checks during development (as outlined earlier, 
under Guardrails for AI Models). One possibility is 
that governments could implement oversight by 
requiring cloud computing vendors to include good 
biosecurity practices in contractual agreements 
with their customers.

Many experts highlighted the need for governments 
to support and improve coordination of broader 
efforts to reduce biosecurity risks from AI-bio 
capabilities. This could include establishing 
intergovernmental cooperation or secure fora that 
include non-governmental stakeholders to discuss 
risks and options for risk reduction. Evaluation and 
red-teaming efforts for AI models currently are 
ad hoc and inconsistent, and governments could 
help establish or fund third-party evaluations to 
improve standardization and to help developers 
who lack the expertise or capabilities to evaluate 

their models. Several experts also believe 
that governments should provide funding for 
coordination efforts and for research programs to 
develop resources needed to support risk reduction 
activities.

As mentioned earlier, many experts believe that it 
will be critical to improve security at the interface 
where digital designs become biological reality. 
Governments already play an important role in DNA 
synthesis screening and could work to strengthen 
these frameworks by expanding requirements 
that providers of synthetic DNA conduct sequence 
and customer screening. Experts also highlighted 
the need to develop improved, AI-enabled DNA 
synthesis screening tools that will keep pace 
with AI protein design tools. These tools will 
require significant funding; experts believe that 
government funding would be needed because 
commercial incentives for such tools are lacking. 
One expert suggested that a U.S. national 
laboratory should support these types of efforts.

AI Model Developers

Nearly all experts see a key role for developers in 
creating models responsibly and overseeing how 
these tools are used. Leading LLM developers have 
already made commitments to invest in the safety 
and security of their models,78 including to reduce 
biosecurity risks, and they could incorporate 
several ideas for guardrails discussed earlier. A 
few experts also believe that AI model developers 
could strengthen cybersecurity to better 
protect their models from tampering or theft, 
establish internal whistleblower protections for 
individuals who raise safety or security concerns, 
and implement other practices to reduce the 
potential for misuse of AI models. Many experts 
also highlighted a need for model developers to 
work collaboratively with other developers and 
outside experts to develop best practices and 
establish norms for responsible behavior. Some 
LLM developers have already begun these types 
of efforts, and these should be coordinated and 
expanded.79
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Many experts believe that developers of AI 
biodesign tools hold some responsibility for how 
their tools are used or misused, but potential 
safeguards, controls, and opportunities for 
oversight are underdeveloped. Model developers 
may need to work with funders and broader 
academic communities to better define their role.

Non-governmental Funders

Non-governmental funders might play several 
roles in reducing risks related to the intersection of 
AI and the life sciences. Funders, particularly those 
who fund academic life sciences research, have 
the opportunity to shape how AI biodesign tools 
are developed and the types of guardrails that are 
incorporated, as many developers of AI models 
in academia lack awareness, incentives, and 
resources for implementing safeguards. Funders 
could also require evaluations of the research 
that they fund to determine whether it will result 
in AI models with the potential for misuse or will 
generate data that could contribute to information 
hazards. A few experts also saw a key role for 
non-governmental, philanthropic funding to 
support international, collaborative efforts to 
develop resources, best practices, and durable 
norms for responsible AI model development and 
dissemination.

Other Key Stakeholders

In addition to governments, AI model developers, 
and non-governmental funders, experts mentioned 
potential roles for a variety of other actors in 
reducing risks from AI-bio capabilities:

 z DNA providers can bolster DNA synthesis 
screening activities and work collaboratively 
on efforts to develop improved screening 
mechanisms.

 z Cloud labs, contract research organizations, 
and other life sciences vendors can implement 
customer screening practices and more closely 
monitor their orders and requested services.

 z Cloud computing vendors can implement 
requirements for their use in the development 
of AI models and could monitor usage of their 
resources by AI model developers.

 z Insurers can evaluate risks and determine 
whether and how the potential for misuse of AI 
models might affect liability insurance, which 
may contribute to the creation of effective 
incentives to implement safeguards.

 z Legal experts can evaluate liability and legal 
frameworks to determine how they intersect 
with AI-bio capabilities and implementation of 
guardrails.

 z Institutional review bodies can require 
evaluations of AI models for their potential for 
misuse and ask about appropriate guardrails for 
those that pose risks.

 z Publishers and conferences can evaluate 
whether new AI models should be published in 
full or whether a less open approach should be 
taken.

 z Civil society can convene multidisciplinary 
groups to develop resources, best practices, 
and approaches for reducing risks.
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Recommendations:  
A Proposed Path Forward for 
Governance of AI-Bio Capabilities

The application of AI to engineering living systems will have far-reaching 
implications that include major potential benefits across many types of 
applications—such as the development of vaccines and therapeutics, 
broader advances in pandemic preparedness capabilities, and more 
fundamental advances in human health and beyond. However, these 
same technologies can also be misused to cause a wide range of harms, 
potentially including a global biological catastrophe. The rapid pace 
of AI advances coupled with accelerating developments in modern 
bioscience and biotechnology requires a radically new approach and 
a layered defense to reduce associated emerging biological risks. 
Effective governance approaches will require focused engagement 
by governments, AI model developers, the scientific community, non-
governmental biosecurity organizations, funders, and international fora.
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The findings of this report, as noted earlier, are based on interviews and engagement with a wide 
range of experts in AI, the life sciences, biosecurity and pandemic preparedness, and other key 
areas. The recommendations provided here build on these findings but were developed by the 
authors alone and do not necessarily reflect the views of the experts who participated in this 
project.

Establish an international “AI-Bio Forum” to develop AI model 
guardrails that reduce biological risks

 z The Forum should serve as a venue for developing and sharing best practices for 
implementing effective AI-bio guardrails, identifying emerging biological risks associated 
with ongoing AI advances, and developing shared resources to manage these risks. It should 
inform efforts by AI model developers in industry and academia, governments, and the 
broader biosecurity community, and it should establish global norms for biosecurity best 
practices in these communities.

 z Regular meetings of the Forum should provide opportunities to raise concerns, evaluate new 
ideas, and develop solutions on an ongoing basis.

 z The Forum should be composed of key stakeholders and experts, including AI model 
developers in industry and academia and biosecurity experts within government and civil 
society, and it should act in concert with other initiatives focused on governance of AI more 
broadly.

 z The Forum should develop a strategy for managing potential information hazards and 
confidential information associated with this work.

Develop a radically new, more agile approach to national governance 
of AI-bio capabilities

 z To address emerging risks associated with rapidly advancing AI-bio capabilities, which 
can be difficult to anticipate, national governments should establish agile and adaptive 
governance approaches that can monitor AI technology developments and associated 
biological risks, incorporate private sector input, and rapidly adjust policy. Traditional 
regulatory oversight mechanisms are not equipped to match the exponential rate of change 
in this field, and many opportunities for risk reduction will depend on implementation by 
AI model developers in industry and academia. Government policymakers should explore 
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innovative approaches, such as dramatically streamlining rule-making procedures; rapidly 
exchanging information or co-developing policy with non-governmental AI experts; or 
explicitly empowering agile, non-governmental bodies that are working to develop and 
implement AI guardrails and other biological risk reduction measures.

 z Governments should plan to try multiple types of approaches because some innovative 
governance ideas could fail. In addition, governments should incorporate sunsetting 
provisions for experimental governance bodies or processes, proactively evaluate successes 
and limitations, and update approaches based on lessons learned.

Implement promising AI model guardrails at scale

AI model developers should implement the most promising already developed guardrails that 
reduce biological risks without unduly limiting beneficial uses. They should collaborate with other 
entities, including the AI-Bio Forum described above, to establish best practices and develop 
resources to support broader implementation. Governments, biosecurity organizations, and 
others should explore opportunities to scale up these solutions nationally and internationally, 
through funding, regulations, and other incentives for adoption. Existing guardrails that should 
be broadly implemented include the following:

 z AI model evaluations, including red-teaming, to preemptively identify and characterize 
biosecurity risks. Evaluations should begin before a model is widely available and should be 
conducted by multidisciplinary teams with expertise in AI, biosecurity, and microbiology.

 z Methods for AI model users to proactively report hazards. Model developers should 
establish ways for users to report when a model has provided potentially harmful biological 
information. These reports should contribute to ongoing efforts to evaluate and update 
models with improved safeguards even after the model is widely available.

 z Technical safeguards to limit harmful outputs from AI models. The state of the art for these 
safeguards is likely to change over time. Current promising approaches include training 
models to refuse to engage on particular topics or requiring models to provide outputs based 
on a “constitution” or set of rules determined by the developer. These should be evaluated 
and updated on an ongoing basis as models advance.

 z Access controls for AI models. A promising approach for many types of models is the 
use of APIs that allow users to provide inputs and receive outputs without access to the 
underlying model. Maintaining control of a model ensures that built-in technical safeguards 
are not removed and provides opportunities for ensuring user legitimacy and detecting any 
potentially malicious or accidental misuse by users.
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Pursue an ambitious research agenda to explore additional AI 
guardrail options for which open questions remain

AI model developers should work with biosecurity experts in government and civil society 
to explore additional options for AI model guardrails on an ongoing basis, experimenting 
with new approaches, and working to address key open questions and potential barriers to 
implementation. Priority areas for exploration include the following:

 z Controlling access to AI biodesign tools. Many strategies for safeguarding AI models 
depend on managing, overseeing, and limiting access, and such strategies should be widely 
adopted. Many LLM developers already employ APIs to maintain control of their models; 
however, some LLMs and many current AI biodesign tools are open-source resources. 
Biodesign tools are often developed by academic scientists in collaborative groups, who 
consider open sharing of resources an important norm for scientific advancement. Funders, 
publishers, and other key players should work with biosecurity experts and the academic 
community to reevaluate open-source norms and publication requirements for some types 
of AI biodesign tools. Key open questions include:

 » Should access to some types of biodesign tools be limited to legitimate users? What types 
of models?

 » How would legitimate users be verified?

 » To what extent would limiting access prevent beneficial uses?

 » Are there additional barriers to implementing access controls for biodesign tools (e.g., 
funding, infrastructure, or know-how among model developers)? How should these be 
overcome?

 z Managing access to computational resources needed to train models. Because significant 
computational infrastructure is currently required to develop the largest, most advanced 
AI models, controlling access—for example, to cloud computing resources held by private 
companies—could help ensure that such models are developed with appropriate safeguards. 
However, available computational resources continue to expand rapidly, and there are strong 
incentives to reduce the amount of computational power needed for these models. Key open 
questions include:

 » Will managed access to computational resources provide a meaningful chokepoint for 
model development in the future, given the rapid decline of computational power required 
to develop new AI models?

 » What types of incentives would effectively ensure that vendors of cloud computing and 
other services enforce requirements for use of their resources?

 » What types of biosecurity safeguards or AI model features should be required?
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 z Managing access to data needed to train models. It is possible that limiting the availability 
of some types of data from being used to train AI models could reduce biological risks. 
However, there are many potential benefits and drawbacks to this approach that depend on 
the types of data in question. For example, removing publicly available pathogen genome 
data from the Internet may be infeasible and, if pursued, could cause more harm than good 
by undermining important, beneficial work, such as bioscience research and biosurveillance. 
It may be more feasible and effective to manage access to databases that are currently 
privately held because of intellectual property or privacy protection needs, such as private 
databases linking protein structure to function or databases that include patient medical 
data. Key open questions include:

 » Are there specific types of data that should not be used or should be used in limited ways 
for incorporation into AI models? What types of data? For what types of models?

 » How will legitimate model development that uses restricted data be verified?

Strengthen biosecurity controls at the interface between digital 
design tools and physical biological systems

 z Tool developers in industry, academia and non-governmental organizations should develop 
new AI tools to strengthen DNA sequence screening approaches to capture novel threats and 
improve the robustness of current approaches.

 z Governments, international bodies, and others should work to strengthen DNA synthesis 
screening frameworks. This work should include improving incentives for DNA providers 
and others to conduct sequence screening and customer screening through establishment 
of regulations, funding requirements, financial support for DNA providers that comply, 
provision of resources to make screening easier, and support for international bodies 
that support DNA synthesis screening practices such as the International Biosecurity and 
Biosafety Initiative for Science.

 z Governments and other key players should expand requirements and incentives for 
customer screening to a wide range of providers of life sciences products, infrastructure, 
and services, including cloud labs, contract research organizations, and academic core 
facilities. This could include support for a third-party verification system for life sciences 
customers.
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Use AI tools to build next-generation pandemic preparedness and 
response capabilities

 z Governments, development banks, and other funders should dramatically increase 
investment in pandemic preparedness and response, including by supporting development 
of next-generation AI tools for early detection and rapid response. Priority investments 
should include rapid development of vaccines and therapeutics for new pathogens and more 
robust biosurveillance and pandemic forecasting capabilities.

Roles and Responsibilities

Successfully reducing biological risks that may arise from the misuse of AI tools will require 
a layered defense implemented by a wide range of actors, often working in unprecedented 
coordination and collaboration. The table below outlines the roles and responsibilities of these 
actors in implementing the recommendations described in the report.

RECOMMENDATIONS RESPONSIBILITY

 indicates primary responsibility

National 
Governments

AI Model 
Developers

Life Science 
Research 

Community
Biosecurity 

Organizations Funders
International 
AI-Bio Forum

Develop and implement AI model guardrails.

Implement existing 
guardrails to reduce 
the risk of misuse of 
AI models.

Perform model 
evaluations, such 
as red-teaming, to 
identify risks before 
a model is released.

Create and support 
mechanisms for 
users to report 
hazards on an 
ongoing basis.

Implement technical 
safeguards in AI 
models to limit 
harmful outputs.

Implement access 
controls for models 
with potential for 
misuse.
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RECOMMENDATIONS RESPONSIBILITY

 indicates primary responsibility

National 
Governments

AI Model 
Developers

Life Science 
Research 

Community
Biosecurity 

Organizations Funders
International 
AI-Bio Forum

Develop and implement AI model guardrails. (contiuned)

Support the scale-up 
of guardrail solutions 
nationally and 
internationally.

Explore additional 
options for guardrail 
development.

Develop additional 
or more effective 
guardrails, 
particularly for 
biodesign tools.

Create mechanisms 
and principles for 
responsibly and 
equitably controlling 
access to AI models.

Explore if and how 
to manage access to 
large computational 
resources.

Explore if and how 
to manage access to 
data with potential 
for misuse.

Develop radically new national governance approaches.

Establish agile and 
adaptive governance 
approaches that 
can monitor 
developments in AI 
tools and biological 
risks.

Try multiple 
governance 
approaches and 
evaluate their 
effectiveness.
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RECOMMENDATIONS RESPONSIBILITY

 indicates primary responsibility

National 
Governments

AI Model 
Developers

Life Science 
Research 

Community
Biosecurity 

Organizations Funders
International 
AI-Bio Forum

Strengthen biosecurity controls at the interface between digital design tools and physical biological systems.

Develop new AI tools 
to strengthen DNA 
sequence screening.

Work together to 
strengthen DNA 
synthesis screening 
frameworks.

Improve incentives 
for DNA providers to 
conduct biosecurity 
screening of 
customers and DNA 
sequences.

Expand requirements 
and incentives for 
customer screening 
to a wide range of 
providers of life 
sciences products 
and services.

Use AI tools to build next-generation pandemic preparedness capabilities.

Increase investment 
in pandemic 
preparedness and 
response, including 
the development of 
AI-bio capabilities.
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Conclusion

The convergence of AI and the life sciences marks a new era for biosecurity and offers 
tremendous potential benefits, including for pandemic preparedness and response. Yet, 
these rapidly developing capabilities also shift the biological risk landscape in ways that 
are difficult to predict and have the potential to cause a global biological catastrophe. 
The recommendations in this report provide a proposed path forward for taking action to 
address biological risks associated with rapid advances in AI-bio capabilities. Effectively 
implementing them will require creativity, agility, and sustained cycles of experimentation, 
learning, and refinement.

The world faces significant uncertainty about the future of AI and the life sciences, but it 
is clear that addressing these risks requires urgent action, unprecedented collaboration, 
a layered defense, and international engagement. Taking a proactive approach will help 
policymakers and others anticipate future technological advances on the horizon, address 
risks before they fully materialize, and ultimately foster a safer and more secure future.
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Appendix B: Examples of AI Models

These tables are not exhaustive, but provide examples of existing AI models, their characteristics, and 
whether or not they are openly available. Information listed in these tables was obtained from publicly 
available sources.

TABLE B.1: LARGE LANGUAGE MODELS

MODEL DEVELOPER PARAMETERS OPEN SOURCE?

Natural language LLMs and their applications

GPT-4 OpenAI
Unspecified,  

likely >1 trillion
No

PaLM Google 340 billion No

MT-NLG NVIDIA 540 billion No

GPT-3 OpenAI 175 billion No

Claude Anthropic Unspecified No

Pi Inflection Unspecified No

LLaMA2 Meta 65 billion Yes

MPT-30B MosaicML 30 billion Yes

Science-specific LLMs and their applications

BioGPT Microsoft 347 million Yes

Elicit Ought Unspecified No

scite scite Unspecified No

TABLE B.2: BIODESIGN TOOLS

MODEL DESCRIPTION 
CITATIONS IN  

GOOGLE SCHOLAR OPEN SOURCE?

Protein design

ProteinBERT Protein language model 199 Yes

RoseTTAFold
Protein structure 

prediction
2,585 Yes

AlphaFold-2
Protein structure 

prediction
15,717 No - requires API
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MODEL DESCRIPTION 
CITATIONS IN  

GOOGLE SCHOLAR OPEN SOURCE?

Protein design (continued)

ProteinMPNN
Protein structure 

prediction
274 Yes

ESM-2, ESMFold
Protein structure 

prediction
407 Yes

RFDiffusion Protein design 50 Yes

xTrimoPGLM
Performs 15 design 

and prediction tasks on 
protein sequences

3 No

Design of DNA, biological circuits, and cells

DNABERT-2
Foundation model for 

DNA sequences
267 Yes

DeepCRISPR 
Design of CRISPR guide 

RNA
322 Yes

Enformer
Predicts the impact of 

genetic variants on gene 
expression

356 Yes

Sei / DeepSEA
Predicts the impact of 

genetic variants on gene 
expression

1,927 Yes

ExpressionGAN
Generates DNA 

sequences to control the 
expression of proteins

1,927 Yes

DeepMEL
Generates DNA 

sequences to control the 
expression of proteins

23 Yes

DeepBind
Predicts the DNA binding 
specificities of proteins

2,671 Yes

Benchling
DNA sequence design 
and editing platform

(no publication) No

Cello 2.0 Genetic circuit design 44 Yes

novoStoic 
Biological pathway 

design
82 Yes

RetroPath2
Biological pathway 

design
190 Yes

Automatic 
Recommendation Tool 
(ART) 

Recommends changes 
in design-build-test-

learn cycles to optimize 
metabolic engineering

140
Non-commercial and 
commercial licenses
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TABLE B.3: AUTOMATED SCIENCE

TOOL AUTOMATION STEP DESCRIPTION OPEN SOURCE?

ResearchRabbit Search literature 
Recommends relevant 
research papers for a 

literature search
No

MineTheGap Generate hypotheses 
Identifies promising 
gaps in the scientific 

literature
No

xT SAAM Design experiments
Designs experiments for 
additive manufacturing

No

Emerald Cloud Lab Perform experiments
Automates  

laboratory work

Symbolic Lab Language 
is open source for 

research use

Opentrons Perform experiments Uses laboratory robotics Yes

Microsoft Copilot Write software
Writes software 
collaboratively  

with a user
No

INDRA
Generate hypotheses, 

interpret results

Resource for 
representing and 

learning from  
scientific knowledge

Yes

Adam Full cycle
Automated scientist for 
gene function discovery

Some publicly  
available elements

Eve Full cycle
Automated scientist for 

drug discovery
Yes
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